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The Evolutionary Basis of Time Preference: 
Intergenerational Transfers and Sex†

By Arthur J. Robson, Balazs Szentes, and Emil Iantchev*

We consider the evolutionary basis of time discounting with intergen-
erational transfers. We show that the notion of “reproductive value” 
from biology provides the utility criterion for a parent to optimize the 
allocation of resources between transfers to offspring and to promote 
her own survival. This optimization has a natural dynamic program-
ming formulation. We show that younger individuals may well be 
“too impatient,” but older individuals “too patient” in accordance 
with observations. We compare the allocation of resources under 
sexual reproduction to that where there is asexual reproduction. Sex 
distorts time discounting; under plausible conditions, sex increases 
patience. (JEL A12, D91)

Most models in economics take preferences as given and then derive the choices 
induced by these preferences. In the tradition of a small, but by now, well-

established literature, we turn this around, first characterizing the choice behavior 
that would result from biological evolution, and then supporting this choice behav-
ior with preferences. That is, we identify the preferences that induce evolutionarily 
optimal choices.

We make the stark assumption that each choice behavior derives from a particu-
lar genetic type. Hence, the choices an individual makes during her lifetime are a 
characteristic that is inherited from her parents. In the simplest case, without sexual 
reproduction, this inheritance is without modification, so populations can be defined 
as a group of individuals having the same genes. Populations with different genetic 
types may grow at different long run rates. Only those types inducing the highest 
asymptotic population growth rate survive evolution.

We consider here the biological basis of intertemporal utility and time prefer-
ences, in particular. Why do we discount the future at all? What accounts for how 
much we discount the future and for the age profile of discount rates?

Perhaps the most basic biological model suggests that we should discount the 
future at the sum of the rate of population growth and the rate of mortality. See 
Robson and Samuelson (2007), for an example. To set the stage for the present 
paper, we present an example to exhibit this basic result. To simplify matters, we 
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consider here a direct trade-off between current and future offspring. In the main 
model of the paper with transfers, we consider a trade-off between the survival prob-
abilities of newborns and the survival probability of the parent to the next period. 
However, the fundamental considerations are the same.

Example 1: Suppose that an individual survives for sure from age zero to age one, 
and survives with probability p from age one to age two, but then dies. She has a 
resource endowment of i which she can split between ages one and two. In each of 
these periods, if she is alive, she transforms her endowment into offspring accord-
ing to a non-negative, continuously differentiable, strictly increasing and strictly 
concave reproduction function u. Assume that u′(x) → ∞ as x → 0. A gene is identi-
fied with a choice rule x ∈ [0, i  ], the use of the endowment in the first period, so the 
endowment available in the second period is i − x. Offspring use the same rule as 
their parent.

Fix a choice, x, and denote the number of individuals who are one year old at time 
t by  y t   . The following equation recursively defines the law of motion of  y t   :

  y t+1  = u(x)  y t  + pu(i − x)  y t−1 .

Indeed, the number of one-year-old individuals at time t + 1 who had one-year-old 
parents at birth is u(x)  y t   . Similarly, pu (i − x)  y t−1  is the number of one-year-old indi-
viduals at time t + 1 whose parents were two years old when they were born.

Dividing both sides by  y t  yields

   
 y t+1  _  y t    = u(x) + pu(i − x)    y t−1  _  y t     .

It is not hard to show that there exists a value of λ > 0 such that  y t+1 / y t  → λ as 
t → ∞, no matter what the initial proportions of one-year-old and two-year-old 
 individuals might be in the population. In the limit, therefore, the previous equation 
can be rewritten as

  λ 2  = λu(x) + pu(i − x).

Let λ(x) denote the unique positive solution of this equation for λ, that is,

 λ(x ) 2  = λ(x)u(x) + pu(i − x).

Let  x *  denote the choice generating the largest possible growth rate and set  λ *  = λ( x * ). 
There exists a solution for x, which is unique and interior.1 Hence,  x *  satisfies the 

1 This is not hard to show, but formal proofs are omitted for brevity. Rigorous proofs of all the necessary formal 
properties are provided for the general models with transfers, with or without sex.
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first-order condition λ′( x * ) = 0. Differentiating the previous displayed equation and 
rearranging, we obtain

 u′( x * ) = pu′(i −  x * )/ λ * .

This equation implies that the optimal decision  x *  must be the unique solution of 2

(1)  max  
x
   

 
   u(x) +   pu(i − x) _  λ *   .

Expression (1) means that the resource allocation that maximizes the population 
growth factor, which is the basic biological problem, must also be the allocation 
that maximizes the expected discounted number of offspring, with the discount fac-
tor equal to the probability of survival divided by the maximal population growth 
factor.3 This latter problem is closely related to the simplest conventional criterion 
for intertemporal choice, expected discounted utility, where utility is identified with 
fertility, and where future fertility is deflated by the growth rate divided by the prob-
ability of survival. Equivalently, we have found that the pure rate of time preference 
is equal to the rate of mortality plus the rate of population growth.4 The intuition 
behind the contribution of population growth is the following. If the population 
is in steady state growth, with growth factor λ, the value of an expected offspring 
tomorrow is less, by this factor of λ, than the value of an expected offspring today.5 
This is because one offspring today can herself have λ offspring tomorrow, so that λ 
offspring produced tomorrow is equivalent to just 1 today.

Many nonhuman species seem to be shaped by a discount rate, one of whose 
components is mortality. For example, birds typically suffer lower rates of preda-
tion than do comparably-sized ground-dwelling mammalian species. As an apparent 
consequence, they invest more in somatic maintenance and may live even longer 
than implied directly by the lower predation. Perhaps also as a consequence, birds 
invest heavily in the rearing of offspring, with the involvement not merely of the 
female, but also of the male, whereas male involvement is rare in ground-dwelling 
mammals.6

It is hardly surprising that mortality would also influence time discounting in 
humans, and well-known (see Irving Fisher 1930, for example). The effect of 

2 Given this uniqueness, the solution here will be supported by other criteria. We address this issue in Example 2 
below.

3 What is the implied attitude to risk in this example? Individuals are risk-neutral in offspring, since the fertility 
function here is best interpreted as expected offspring. However, it follows readily that Expression (1) is strictly 
concave in the total endowment, i, so individuals are strictly risk-averse in resources. The Bernoulli utility function 
here is a biological production function. These observations generalize straightforwardly to the models in the pres-
ent paper, given all risk is idiosyncratic.

4 If, that is, p =  e −δ , where δ is the implied continuous-time mortality rate, and λ =  e g , where g is the implied 
continuous-time population growth rate, then the pure rate of time preference is lnλ − ln p = g + δ.

5 For the purpose of this explanation, mortality is included in the calculation of expected offspring.
6 Even closer to home is that arboreal mammals live longer than do comparable ground dwelling mammals. 

Arboreality reduces predation, and has been proposed as the original circumstance leading to greater longevity in 
primates. See Shattuck and Williams (2010).
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 population growth on discounting is a recent insight provided by a biological 
approach. This component of discounting should be constant across all ages, thus 
providing some support for the simplest of all economic criteria for evaluating 
intertemporal consumption, namely the sum of discounted utility, where the dis-
count factor is constant.

However, this basic result is not readily squared with observations on rates of 
time discounting. That is, the average rate of human population growth during the 
1.8 million years of our evolutionary history must have been, as a matter of arithmetic 
necessity, only imperceptibly greater than 0. Plausible estimates of hunter-gatherer 
mortality rates range from 1 percent for 10 year olds to 4 percent for 60 year olds; 
but these seem rather lower than plausible estimates of the pure rate of time  discount. 
See Gurven and Kaplan (2007) for these mortality estimates; see Anderson et al. 
(2008) for experimental estimates of the pure rate of time preference.

One of the contributions of the current paper is to evaluate a candidate for clos-
ing this gap that was proposed in a seminal paper by Rogers (1994). This candidate 
is sexual reproduction in the context of intergenerational transfers. Rogers (1994) 
argued as follows. Consider a 25-year-old woman who can invest resources to ben-
efit her current newborn. For simplicity, suppose the return from the investment 
is received 25 years from now, when her newborn will also be 25. Rogers (1994) 
further supposes that this investment problem has an interior solution. The marginal 
value of resources will be the same to her offspring 25 years from now as it is to 
the mother now. However, from the current mother’s point of view, sex deflates the 
importance of her offspring by a factor of   1 _ 2  . In the simplest case of “haploid” sex, 
this is because this offspring will be a carbon copy of her mother with probability   1 _ 2  , 
but will be a carbon copy of her father otherwise. Given zero population growth, and 
apparently abstracting from mortality, a unit of resources 25 years from now will 
be worth   1 _ 2    as much to the mother as it is worth today, and Rogers (1994) uses that 
as the basis for calculating a plausible rate of time preference of around 2 percent.

There are a number of difficulties with the Rogers (1994) analysis that are dis-
cussed by Robson and Szentes (2008). One that is easy to outline is that it cannot 
be true that all these “same age transfers” involve interior solutions. After all, the 
same argument as above but now applied to a 30-year-old mother contemplating 
an investment to favor her newborn 30 years from now would imply a lower rate 
of time preference. In order to address directly the difficulties with Rogers (1994) 
model, Robson and Szentes (2008) developed an example that permitted same age 
transfers. However, this requirement made the example awkward enough that it could 
not shed light on the core claim of Rogers (1994)—that sex is a key factor leading to 
impatience. The present paper develops a model that is more tractable and therefore 
illuminating by not being required to allow same age transfers. Although the model 
is then no longer directly comparable to Rogers (1994), it is an inherently plausible 
view of transfers and sex. In our model, however, sex may well reduce impatience. 
Thus sexual reproduction is not guaranteed to close the gap between typical rates of 
time preference and typical mortality rates.

On the other hand, the current paper provides another way of closing this puz-
zling gap. Indeed, we address a more refined view of the puzzle. In this more refined 
view, it is largely children and younger adults who are too impatient relative to 
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mortality rates and the population growth rate. We argue that younger adults are too 
impatient in this sense because rising resources with age are likely to decrease the 
marginal productivity of resources transferred to offspring. For children, the model 
disconnects their time discounting from the mortality rate or the growth rate, so they 
also may be too impatient.

This more refined view of the puzzle also involves a reversal of the typical gap. 
That is, older adults are, at the same time, too patient, with moderate rates of time 
discounting that are too low relative to their increasingly high mortality rates and the 
population growth rate. The model gives an explanation of this that is the flip side of 
the explanation for younger adults. That is, since older adults experience decreasing 
output, this would likely reduce transfers to offspring, and so increase the marginal 
productivity of such transferred resources.

The above scenario involves time discounting that is is denominated in resource 
terms, rather than in terms of utility. That is, our measure of time discounting cor-
responds to the marginal rate of intertemporal substitution in consumption in a con-
ventional model rather than be the usual “pure” rate of time preference, denominated 
in utility terms. Our model would apply directly to a foraging society in which there 
were limited opportunities for intertemporal substitution. Time discounting denom-
inated in resource terms would have been shaped by the age profile of energetic 
income. However, this analysis might continue to apply in a modern setting in which 
capital markets exist, as long as they remain rather imperfect. Consumption would 
then continue to track income, as indeed is observed. See Browning and Lusardi 
(1996), for example. In such a modern setting, it might well then remain the case that 
younger adults are “too impatient” and older adults “too patient,” in the above sense.

Finally, our analysis provides formal insights. We first derive the appropriate 
notion of “reproductive value” for our model of transfers. This represents a general-
ization of the simple notion of this, originally due to Ronald A. Fisher (1930), which 
latter is the expected discounted value of offspring from each age forwards, condi-
tional on survival to that age, where the population growth factor is used to discount 
the future. This simple notion of reproductive value is only appropriate in contexts in 
which offspring are homogeneous.7 The most general notion of reproductive value 
stems from the relative contribution of each type of offspring to the population in 
the distant future. In our case, even with heterogeneous offspring, the generalized 
reproductive value remains an appropriate eigenvector. This approach lends itself to 
further generalization. A key formal result of the paper is to illuminate a close con-
nection between utility functions and this appropriate notion of reproductive value. 
The utility function at each adult age is again the expected discounted sum of the 
value of descendants. Although this results in a substantially different expression 
from that of Ronald A. Fisher (1930), the population growth factor still discounts 
the future.8 Optimal choice at each age still involves maximizing current reproduc-
tive value. Since current reproductive value derives from the reproductive value of 

7 A technical flaw in the Rogers model was the application of this simple notion of reproductive value in a con-
text with heterogeneous offspring.

8 Reproductive value could indeed still expressed in terms of the expected discounted sum of the value of new-
borns. Since newborns are heterogeneous, however, this is not equivalent to the expected discounted sum of the 
number of newborns, as in Ronald A. Fisher (1930).
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offspring and the reproductive value of the parent, both one period ahead, lifetime 
optimal choice solves a simple dynamic programming problem.

A. A Map of the Paper

Section I presents a benchmark model that is a stepping stone for our model of 
transfers. There is an asexual species in which individuals live an arbitrary number 
of periods. In this benchmark model, we obtain the appropriate reproductive val-
ues, which arise as an eigenvector, in a fashion reminiscent of shadow prices in the 
von Neumann growth model. These values are the expected discounted value of future 
fertility, conditional on each age, where the discount factor is the population growth 
factor. How these reproductive values work as utility functions is illustrated by con-
sidering a basic biological trade-off between the number of offspring and survival to 
the next period. The simplification that all offspring are identical is the crucial simpli-
fying feature of this benchmark model. We conclude Section I with an example that 
considers the circumstances under which the utility criterion is essentially uniquely 
determined. This involves introducing suitable idiosyncratic random shocks.

In Section IIA, we develop a model of transfers in which offspring cannot be 
identical, but vary in quality. We then examine the optimal choice of such qual-
ity by the parent or parents of each age. In Section IIA, there is an asexual species 
in which parents trade-off their own survival to the next period against the sur-
vival of their newborns. The differential survival of offspring across parental ages 
means that newborns are heterogeneous. In the presence of such intergenerational 
transfers, with differential offspring quality, it is not appropriate to maximize the 
discounted sum of expected offspring. However, reproductive value again arises in 
the same general way as in the benchmark model as an eigenvector. In addition, we 
retain the intuitively pleasing result that optimal choice by an individual of each age 
maximizes this reproductive value.

In Section IIA, we also derive the implications of intergenerational transfers for 
discounting. We show that the marginal rate of intertemporal substitution for prerepro-
ductive individuals is dissociated from the sum of the mortality rate and the population 
growth rate. For reproductive adults, the marginal rate of intertemporal substitution 
reflects, as one of its components, this sum. The other component reflects the motive to 
make transfers to newborns, and this is likely to increase time discounting for younger 
adults, but decrease it for older adults, in rough agreement with observations.

We introduce sexual reproduction into our model in Section IIB. Sexual repro-
duction implies that the choices made by the two parents interact, so that the situ-
ation is now a game. This has substantial implications for predicted behavior. The 
reproductive values derive from the pattern of fertility and survival in the same way 
as for the asexual species. An individual of each age still maximizes a utility func-
tion that derives from reproductive value, with the key difference from the asexual 
case that sexual individuals deflate the importance of the survival of their offspring 
by a factor of   1 _ 2  . This is because if the gene has frequency zero in the population, 
then the probability of the other parent having the same gene is zero, so the probabil-
ity an offspring has the same gene is   1 _ 2   . This is true even though, in the evolutionary 
equilibrium, all individuals have the same gene.
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The following results are established. Every adult systematically skews her allo-
cation of resources to favor her own survival at the expense of her offspring’s sur-
vival. This is true in a myopic sense, that is, holding constant the reproductive value 
of the adult in the next period. This distortion will inevitably affect these reproduc-
tive values. However, even when the implications of sex for reproductive values are 
appropriately allowed for, the sexual type increases all adult survival rates at the 
expense of all newborn survival rates. Sex then unambiguously reduces the quality 
of offspring in this sense. However, this distortion does not entail greater impa-
tience. Rather, sex may well imply too much patience, since greater adult survival 
militates in this direction.

Section III concludes by discussing issues of interpretation, extensions that would 
be of definite interest, despite varying degrees of feasibility, and an application to 
the global warming debate.

I. A Benchmark Model without Transfers

Consider an asexual species in which each individual lives to a maximum age of 
T periods. At age τ = 0, … , m − 1, she has  u τ  = 0 offspring; at age τ = m, … , T, she 
has  u τ  > 0 expected offspring. In this benchmark model, but not subsequently, the 
offspring produced by parents of differing ages are identical. Finally, each individ-
ual survives from age τ to age τ + 1 with probability  p τ  ∈ (0, 1), for τ = 0, … , T − 1.

The parameters just described in general will eventually be taken to depend on 
the choice made by the individuals, so the issue is to derive the optimal choice. We 
consider a simple explicit choice problem below. As a necessary building block, we 
first consider the implications of a particular fixed set of parameters for the growth 
rate of population.

The population then evolves as

  n t+1  =  n t  L,

where  n t  is a row-vector describing the population at date t so that  n t  = ( n  1  t
  , …  n  T  t

  ) 
where  n  τ  t   is the number of individuals of age τ = 1, … , T at date t.9 Also L is the 
Leslie matrix

L = 

 p 0  u 1  p 1 0 . . 0

.

 p 0  u 2 0  p 2 0 .. 0

 p 0  u 3 0 0  p 3 .. .

... .. . . . 0

 p 0  u T−1 0 . . 0  p T−1 

 p 0  u T 0 . . . 0

9 It is convenient to consider newborns, with τ = 0, only implicitly here. This asymmetric reduction in the num-
ber of age classes generates the need for a little algebra here and there, but saves a lot elsewhere, and is especially 
helpful in the following sections that treat transfers.
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All of these columns except the first simply describe how the number of individuals 
of age τ = 2, … , T at date t is the number of individuals of age τ − 1 at date t − 1, 
allowing for survival,  p τ−1 . The first column describes how the number of age 1 
individuals is the total number of newborns one period ago,  ∑ τ  =1  

T
    u τ    n  τ  t−1 , allowing 

for survival,  p 0  .
The Perron-Frobenius Theorem implies that the system settles into steady state 

growth with the growth factor λ > 0 being the unique dominant eigenvalue.10 
Furthermore, the left eigenvector q >> 0 (taken as a row vector) gives the limiting 
population proportions and the right eigenvector v >> 0 (so  v  T  denotes the associ-
ated column vector) gives the relative values of each age class. That is, we have

 qL = λq, L v  T  = λ v  T  and | L − λI | = 0.

Note that q and v are only determined up to a multiplicative constant. A straightfor-
ward proof by induction shows that the characteristic equation is

(2) 1 =    p 0   u 1  _ λ   + ⋯ +    p 0  ⋯  p T−1   u T 
  _ 

 λ T 
  , 

which indeed is the Euler-Lotka equation and can be obtained more directly by 
straightforward arguments from the steady state.

The left eigenvector gives the relative proportions of individuals in each age class 
in the steady state, as is familiar in demography. It can be taken to be, for example, 

q = (   p 0 
 _ λ  ,   

 p 0   p 1  _ 
 λ  2 

   , … ,   
 p 0  . .   p T−1  _ 

 λ  T 
  ).11

The right eigenvector satisfies

(3)  v τ  =  u τ  +    p τ   v τ+1  _ λ  , τ = 1, … , T − 1, 

the solution of which can be taken as

(4)  v τ  =  u τ  +    p τ   u τ+1  _ λ   + ⋯ +    p τ … p T−1   u T 
 _ 

 λ T−τ 
  , τ = 1, … , T,

which are the reproductive values as defined by Ronald A. Fisher (1930). That is,  v τ  
is the expected discounted sum of future fertility, conditional on being alive at age 
τ, where the expectation includes the probability of survival to each future age, and 
where the discount factor is the population growth factor.

How would evolution choose between arbitrary profiles of survival probabilities 
and fertilities, with each profile of the form {   p τ   ,  u τ+1  }  τ   =0  T−1  ? The theory of evolu-
tionary choice can be developed in the same way as it is conventional to describe 

10 See Seneta (1981). It is enough that there exist two ages τ and τ  ′ = τ + 1 such that  u τ  and  u  τ  ′   are strictly 
positive.

11 This form of q would arise from normalizing  q 0  = 1 if the newborns were explicitly included.
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 preferences in consumer theory. That is, evolutionary preferences are independent 
of the set of options considered. The most general biological representation of inter-
temporal preferences is the growth factor λ. Often, however, a more useful repre-
sentation from an economic perspective is the right-hand side of the Euler-Lotka 
equation, equation (2). These are connected in that it is necessary that a growth max-
imizing profile of demographic characteristics  p τ  and  u τ+1  for τ = 0, … , T − 1 also 
maximize the right-hand side of this equation, given the optimal growth factor λ.12

To illustrate this approach in a concrete fashion, and one congenial to econo-
mists, since it involves allocating a scarce resource, consider a very basic biologi-
cal trade-off—that between the number of offspring and own survival. Considering 
this trade-off allows us to remain within the benchmark model, since all offspring 
remain identical. (The trade-off considered in the model of transfers, on the other 
hand, forces us to consider heterogeneous offspring.) Suppose now that each adult 
individual of some particular age τ ∈ {m, … , T } has a resource budget or income  
i τ  > 0. This budget is to be divided between resources used to produce offspring,  
r τ  ≥ 0, via the function  u τ ( r τ ), and resources used to promote survival to the next 
period,  s τ  ≥ 0, via the function  p τ ( s τ ), so that  i τ  =  r τ  +  s τ   . Suppose the functions  
 u τ (·), and  p τ (·) are non-negative, continuously differentiable, with a strictly positive 
derivative everywhere, and strictly concave everywhere.

The reproductive values permit a nice view of optimal choice, as follows. From 
the Euler-Lotka equation, equation (2), and the equation determining  v τ   , equa-
tion (4), the first-order condition for the optimal allocation of resources by an indi-
vidual of age τ must solve the following problem

  max   
   r τ ,  s τ ≥0

                r τ   + s τ   = i τ 
  
    v τ ( r τ   ,  s τ ) 

≡    max   
   r τ ,  s τ ≥0

                r τ   + s τ   = i τ 
  
 ( u τ ( r τ ) +    p τ ( s τ ) _ λ   [ u τ+1  +   

 p τ+1  u τ+2  _ λ   + ⋯ +    p τ+1 … p T−1  u T 
  _ 

 λ T−τ−1 
  ]).

This explicitly spells out the utility criterion relevant to this age τ individual. This 
can be more compactly expressed as

   max   
   r τ ,  s τ ≥0

                r τ   + s τ   = i τ 
  
   v τ ( r τ   ,  s τ ) ≡   max   

   r τ   ,  s τ ≥0
                r τ   + s τ   = i τ 
  
   u τ ( r τ ) +    p τ ( s τ ) _ λ    v τ+1 .

In either case, this age τ individual solves the problem of maximizing her reproduc-
tive value  v τ ( r τ   ,   s τ ) which is then interpreted as her utility function.

This model could be generalized to consider optimal choices like this by indi-
viduals of all ages, making the choice then of whether fertility is zero or strictly 
positive fully endogenous. Such a model could then endogenize the transition 
from childhood, with zero fertility, to adulthood, with positive fertility. This would 
not be a derivation from first principles, however, since it would be predicated on 

12 For suppose equation (2) holds, thus determining the value of λ. but that there exists a demographic profile 
that raises the right-hand side of equation (2). It follows that λ can then be raised above its original value.
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 age-varying income and the age-varying survival functions. See Kaplan and Robson 
(2009), for a model that generates all of our key demographic characteristics with-
out relying on time-varying parameters or functions.

One natural question concerning this model and the subsequent ones is: Given 
that the earth is of a limited size, surely it is not possible that the maximal λ is 
greater than 1? That is, surely finite land, for example, forces the maximal λ to be 
no greater than 1? One way that the model can be adapted to this observation is to 
suppose that survival rates  p τ  are decreasing functions of total population N, say. 
This dependence might plausibly be such that growth factors greater than 1 are 
possible at low values of N, but that growth is inevitably choked off as N grows. 
In the limit then a growth factor of exactly 1 will emerge in an endogenous fash-
ion. We will return to this issue when comparing the models of transfers with and 
without sex.

Another natural question that arises with respect to the above model and more 
generally is: Since there is only one optimal choice, surely the given criterion is not 
the only one that supports it? We use the following example to sketch the intuition 
that the addition of suitable noise means that the criterion is essentially uniquely 
determined. This example is a simplification of the benchmark model described 
above, except for the source of idiosyncratic noise.

Example 2: Suppose then that T = 2 and that fertility at age 1 is a non-negative, 
continuously differentiable, strictly increasing, and strictly concave function of the 
resources allocated for that purpose, r, say, so that fertility is given by  u 1 (r). If 
the resources used to promote survival from age 1 to age 2 is s, then this survival 
probability is p(s), where p(⋅) is assumed to be continuously differentiable, strictly 
increasing and strictly concave. Suppose survival from age 0 to age 1 is certain, and 
that fertility at age 2 is  u 2  .13

Suppose now that the resource endowment is a random variable, given by  ̃  i , 
which has support [0, ∞). Furthermore, the effectiveness of resources in promoting 
the survival of offspring is also a random variable given by   ̃  α  also with full support 
[0, ∞). These random variables are independent of each other, and also independent 
across individuals.14 The budget constraint then has the form r +   ̃  α   s =  ̃ i .

The individual is taken to be aware of the joint realization (α, i ) of the random 
variable pair (  ̃  α ,   ̃ i  ) and to then choose the resource allocation (r (α, i ), s(α, i )), 
where r(α, i ) + αs(α, i ) = i.

The basic question then is: To what extent is the appearance of the functions  u 1 (·) 
and p(·) in utility uniquely determined by the need to account for the evolutionarily 
optimal choices to be made here by the individual?

It is first necessary to address the question: In the presence of this random vari-
able, and given a large population, what is the growth rate of a type that follows an 

13 This specification is consistent with the example of choice considered above. An alternative specification that 
would agree more closely with Example 1 would suppose that the survival probability, p, is fixed but that fertility at 
age 2 is endogenous, given by  u 2 (s), say. This makes only notational differences to the argument here.

14 The two random variables do not need to be independent of each other; it is enough that they have full support, 
namely [0, ∞ ) 2 . However, see Robson and Samuelson (2009) for an investigation of the substantial consequences 
of relaxing the requirement of independence across individuals.
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arbitrary allocation rule (r (., .), s(., .))? Expected offspring of an age 1 individual is  
E   ̃  α ,  ̃ i   [ u 1 (r(  ̃  α ,  ̃ i  ))]; that of all age 2 individuals is  E   ̃  α ,  ̃ i  [ p(s(  ̃  α ,  ̃ i  ))] u 2 , where this expec-
tation is formed from a point of view at age 0, and so includes the survival probabil-
ity from age 1 to age 2 in particular. Since all the risk here is idiosyncratic and the 
population is assumed to be large, the long run growth factor λ satisfies equation (2) 
so that

 1 =  E   ̃  α ,  ̃ i   [ u 1 (r(  ̃  α ,   ̃ i  )) +   p(s(  ̃  α ,   ̃ i  )) u 2  _ λ  ].
The best allocation rule maximizes λ in this version of the Euler-Lotka equation. It 
is then clear that the optimal allocation rule solves

(5)   max   
  r, s≥0             r  + αs=i  

    u 1 (r) +   p(s) u 2  _ λ   , 

for each pair of realizations (α, i ) of the random variables (  ̃  α ,  ̃ i  ).
This is now entirely analogous to a familiar problem from consumer theory. 

Problem (5) gives rise to fully specified “demand functions” r (α, i ) and s(α, i ) that 
represent the behavior that must be generated for evolutionary optimality. Using 
this demand analogy, it follows that these functions can be “integrated” to obtain 
a utility function that is unique up to an arbitrary monotonic transformation. That 
is, the only overall criteria that generates the same required behavior must be of 
the form ψ[  u 1 (r) +   p(s) u 2 

 _ λ  ], for some strictly increasing function ψ. If ψ is twice 
continuously differentiable, and the overall criterion is required to remain additively 
separable, the only flexibility left is to multiply both  u 1 (r ) and p(s)  u 2  by a common 
positive constant, and to add possibly different arbitrary constants to these func-
tions. In this straightforward sense, the functions  u 1 (r ) and p(s)  u 2  are essentially 
uniquely identified.

Note how the population growth factor λ that should be applied in equation (5) 
is derived from average population-wide fertilities and is not customized to the par-
ticular individual. That is, an individual who obtains high realizations of   ̃  α  and  ̃  i , for 
example, should use the same factor λ in her calculations as should an individual 
with low realizations. Idiosyncratic risk then does not cause varying impatience.

There is no reason to doubt that an analogous argument can also be applied in the 
model of the next section. That is, not only would the argument generalize to allow 
for the trade-off there between survival of newborns and survival of the adult to the 
next period, but to allow an arbitrary number of ages as well.

II. The Model of Transfers

The point of the Rogers (1994) approach was to examine how sexual reproduc-
tion was a source of impatience when transfers can be made from parents to off-
spring. Particular problems with Rogers’ formulation were examined by Robson 
and Szentes (2008). In this section, we reexamine this issue in a more natural 
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model that is not constrained by the need to allow for “same-age” transfers as 
in Rogers (1994). Indeed, we consider here the simplest kind of transfer—one 
from a parent to a  newborn that increases the probability of that newborn surviving 
to the next period. The opportunity cost to the parent of this transfer is a reduction 
in the probability of the parent surviving to the next period. Resources cannot be 
explicitly saved or carried forward at all, also in contrast to Rogers (1994). This is 
defensible on the grounds of realism, since there were no obvious direct ways of 
making commodity trade-offs across widely separated dates in hunter-gatherer soci-
eties prior to agriculture. At the same time, it is crucial that we ultimately consider 
how such individuals might once have made such trade-offs implicitly, and would 
make explicit commodity trade-offs once they became available. We show that these 
implicit trade-offs may well mean that children and younger adults have rates of 
time preference that exceed the sum of the mortality rate and the population growth 
rate; but older adults have rates that are less than this sum.

A. Transfers without Sex

Consider again an asexual species. Suppose now that individuals of ages 
τ = 1, … , T have incomes  i τ  > 0. Newborns of age 0 have income 0. Each adult 
individual of age τ = m, … , T transfers an amount  r τ  ≥ 0 to each of her  u τ  > 0 new-
born offspring, keeping  s τ  ≥ 0 to promote her own survival to age τ + 1. It is now 
generally inescapable that offspring from parents of different ages will be different. 
An offspring who is the beneficiary of a larger transfer and so survives with higher 
probability has higher “quality” in that sense than one with a lower transfer. This 
heterogeneity must be taken into account in the appropriate notion of reproduc-
tive value. The budget constraint is  s τ  +  u τ   r τ  =  i τ  for τ = 1, … , T. Children of age 
τ = 1, … ,  m − 1 have no offspring so that  u τ  = 0 and they set  r τ  = 0 and  s τ  =  i τ   . In 
addition,  s T  = 0 so that  r T  =  i T / u T   .15

The effect of the transfers is to promote the survival of newborns for one period. 
That is, this survival probability is endogenous, and given by  p 0 ( r τ ), for each off-
spring of an age τ = 1, … , T parent. Survival of each age τ parent to the next period 
is given by  p τ ( s τ ). The functions  p τ (⋅), τ = 0, … , T are non-negative, continuously 
differentiable, strictly concave, with a strictly positive derivative everywhere, and 
where this derivative tends to infinity at 0. In this formulation, we assume for sim-
plicity that the fertilities  u τ  for τ = 1, … , T are fixed, in contrast to the choice con-
sidered in the context of the benchmark model.

Again we have

  n t+1  =  n t  L,

15 For simplicity, this model does not consider transfers from parents who are no longer fertile to their older 
children or grandchildren. This interesting issue is taken up in Section III.
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where  n t  is row-vector describing the adult population at date t so that 
 n t  = ( n  1  t

  , … ,  n  T  t
  ), and where the Leslie matrix is now16

L =

  p 0 ( r 1 ) u 1  p 1 ( s 1 ) 0 . .. 0

.

 p 0 ( r 2 ) u 2 0  p 2 ( s 2 ) 0 .. 0

 p 0 ( r 3 ) u 3 0 0  p 3 ( s 3 ) .. .

... . . . .. 0

 p 0 ( r T−1 ) u T−1 0 . . 0  p T−1 ( s T−1 )
 p 0 ( r T ) u T 0 . . . 0

All the columns except the first have a similar simple interpretation to that for the 
benchmark model. The first column describes how the number of individuals of 
age 1 at date t arises from the newborns of all individuals of age τ = 1, … , T at 
date t − 1 as the sum  ∑ τ =1  

T
    p 0  ( r τ ) u τ   n  τ  t−1 .

The Euler-Lotka equation, or, equivalently, the characteristic equation for L, 
namely | L − λI | = 0, is now

(6) 1 =    p 0 ( r 1 ) u 1  _ λ   +    p 0 ( r 2 ) p 1 ( s 1 ) u 2   _ 
 λ 2 

    ⋯ +    p 0 ( r T ) p 1 ( s 1 )… p T−1 ( s T−1 ) u T 
   __  

 λ T 
   .

The most basic view of preferences here, as before, is λ, but a useful representation 
is often the right-hand side of this equation. That is, maximizing this expression, 
taking the optimal value of the growth factor, λ, as parametric, is a necessary condi-
tion for maximizing this growth factor.17

The limiting population proportions, q, can be taken to be q = (1,     p 1 ( s 1 )
 _ λ   , … ,   

 p 1 ( s 1 )… p T−1 
 _ 

 λ  T−1 
  ) , 

with the normalization that  q 1  = 1. The reproductive values again satisfy L v T  = λ v T . 
That is, with the normalization that  v 1  = 1,18

(7)  v τ  =    p 0 ( r τ ) u τ  _ λ   +    p τ ( s τ ) v τ+1  _ λ   for τ = 1, … , T − 1, with  v T  =    p 0 ( i T / u T ) u T 
 _ λ   .

These equations straightforwardly relate the value of an individual of age τ to the 
value of her offspring, derived as the expected value of these one period ahead, plus 

16 The advantage of suppressing explicit treatment of newborns is now significant. If newborns were included 
explicitly, that is, there would be T different types of them, one for each possible parental age.

17 For suppose that the allocation { s τ   ,  r τ  }  τ=m  T−1
   does not maximize the right-hand side of equation (6), where 

equation (6) is itself satisfied, thus determining λ. There must then exist an alternative allocation that raises the 
right-hand side of equation (6) above 1. This implies that λ can be increased to restore equality, and that the original 
value could not have been optimal.

18 For expositional economy, children, who have  u τ  = 0, for τ = 1, … , m − 1, are included in this formulation.
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the expected value of the individual herself one period ahead. It is easy to solve 
these equations by backwards recursion to obtain each  v τ  as follows

(8)  v τ  =   1 _ λ   {  p 0 ( r τ ) u τ  +    p 0 ( r τ+1 ) p τ ( s τ ) u τ+1   __ λ   + ⋯ +    p 0 ( r T ) p τ ( s τ )…  p T−1 ( s T−1 ) u T 
   __  

 λ T−τ 
  }, 

for τ = 1, … , T.19

The expression in equation (8) in particular details the reproductive value of an 
age τ = m, … , T − 1 adult individual. These individuals face nontrivial choice prob-
lem since they have both newborn offspring and an endogenous probability of sur-
vival to the next period. Each adult individual of age τ = m, … , T − 1 maximizes her 
reproductive value which we then interpret as her utility function.

This utility function has some rather familiar properties—additive separability 
and the appearance of a constant discount factor, λ, for example. In addition, the 
term  p 0 ( r τ ) is analogous to a age-invariant felicity function. The less familiar proper-
ties of this expression derive from the interpretation of the  p τ ( s τ ) for τ = 1, … , T, as 
survival probabilities. In the first place, these probabilities are taken to be subject to 
choice here. Further, it is the product of these probabilities between the current age 
and any future age that enters the above criterion.

The recursive relationship in equation (7) permits a simple dynamic program-
ming view of these values that is tailored to the current model by highlighting the 
consequences of the current choice.20

THEOREM 1: in the present model of transfers without sex, the unique optimal 
allocation of resources by adults of age τ = m, … , T − 1 is the unique solution to the 
dynamic programming problem

(9)   max    
   r τ   ,  s τ ≥0

                    u τ   r τ   +  s τ   =   i τ 
  
     p 0 ( r τ ) u τ  _ λ   +    p τ ( s τ ) v τ+1  _ λ   ≡   max    

   r τ    ,  s τ   ≥0
                    u τ    r τ   +   s τ   = i τ 

  
   v τ ( r τ   ,  s τ ), 

where equation (7) yields the  v τ   , and where Euler-Lotka equation, equation (6), 
yields λ.

PROOF: 
Dynamic programming implies that the unique choices of age τ = m, … , T − 1 adults 

described in equation (9) and equation (7) maximize the RHS of the Euler-Lotka equa-
tion, equation (6), for an arbitrary λ > 0. If V(λ) denotes this maximized value of the 
RHS of equation (6), then it follows readily that (i) V(·) is continuously differentiable, 
with V  ′(λ) < 0, for all λ > 0; that (ii) V  (λ) → ∞, as λ → 0; and that (iii) V  (λ) → 0, 
as λ → ∞. (i) Using the envelope theorem, where { s τ   ,  r τ  }  τ  =m  T−1

   is the optimal profile, it 

19 By suppressing explicit treatment of newborns, we finesse the issue of their heterogeneity. If they were not 
suppressed, that is, we would need T additional reproductive values.

20 See Houston and McNamara (1999) for an excellent treatment of such dynamic programming results from 
a biological point of view. See, in particular, McNamara, Houston, and Webb (1994) for an application to kin 
selection.
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follows that V  ′(λ) = −  p 0 ( r 1 ) u 1 / λ 2  − 2 p 0 ( r 2 ) p 1 ( s 1 ) u 2 / λ 3  − ⋯ < 0. (ii) Since V  (⋅) 
is bounded below by the value the right-hand side of equation (6) has for an arbi-
trary allocation, it also follows that V(λ) ≥  p 0 ( i m ) p 1 ( i 1 )… p m−1 ( i m−1 ) u m / λ m  → ∞, 
λ → 0. (iii) Let   

_
 u  = ma x  τ    { u τ }. Since  p 0 (⋅),  p τ (⋅) ≤ 1, it follows that V(λ) ≤ 

 _ u /λ{1 + 1/λ + 1/ λ 2  + ⋯} =  _ u /(λ − 1), assuming λ > 1. That is, V(λ) → 0 as 
λ → ∞.

Hence there exists a unique  λ *  > 0 satisfying V( λ * ) = 1. This is the maximum 
feasible growth factor, since if λ >  λ * , so that V(λ) < 1, then there is no resource 
allocation profile such that λ satisfies equation (6).21

Given the properties of the survival functions  p τ   (·), for τ = 0, … , T, there must 
be a unique interior solution to the problem of maximizing the right-hand side of 
equation (6)—that is, with  r τ  > 0 and  s τ  > 0, for τ = m, … , T − 1. The first-order 
conditions, which are then necessary and sufficient, are

  p  0  ′  ( r τ ) =  p  τ  ′  ( s τ ) v τ+1 , τ = m, … , T − 1,

which, together with equation (6) itself and equation (7), characterize the optimal 
lifetime allocations of individuals for whom this decision is nontrivial.22

The marginal rate of (intertemporal) substitution between adjacent resource 
income levels  i τ  and  i τ+1  is given by

 Mr S τ  =   
  ∂λ _ ∂ i τ 

  
 _ 

  ∂λ _ ∂ i τ+1 
  
  , τ = 1, … , T − 1.

In the present case, it follows from the Euler-Lotka equation, equation (6), that, for 
adults of age τ = m, … , T − 1, for whom there are transfers to newborns,23

 Mr S τ  =   λ p  0  ′  ( r τ ) _   p τ ( s τ ) p  0  ′  ( r τ+1 )
   .

This expression for MrS yields a rate of time preference denominated in resource 
terms. The MrS is the applicable bottom-line exchange rate that would be used 
by an individual considering the effect of a small intertemporal rearrangement of 
resources and so is the rate that would be most easily observed in practice.

There is a familiar component of this expression given as λ/ p τ ( s τ ), which cor-
responds to the “pure rate of time preference.” This component is the prediction 
of the basic model as sketched in Example 1. Lower survival to the next period, 
as reflected in a higher rate of mortality, is a familiar reason for impatience (since 

21 That is, under the hypotheses of the theorem, it is not only necessary for a profile to be optimal that it maxi-
mize the right-hand side of equation (6) and that equation (6) hold, but sufficient as well.

22 That is, these individuals have both newborn offspring and an endogenous probability of survival themselves.
23 To show this, apply the envelope theorem to equation (6). First note that ∂λ/∂ i τ  = ∂λ/∂ s τ  = (∂λ/∂ r τ )/(1/ u τ ). 

Now we obtain

(∂λ/∂ i τ ){  p 0 ( r 1 ) u 1 / λ 2  + 2 p 0 ( r 2 ) p 1 ( s 1 ) u 2 / λ 3  + ⋯} =  p  0  ′   ( r τ ) p 1 ( s 1 )... p t−1 ( s τ−1 )/ λ τ .
Since the coefficient of (∂λ/∂ i τ ) is independent of τ, the desired expression follows.
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Irving Fisher 1930, at least). There is also a biological cause of impatience (which 
has also become more familiar recently)—population growth, as reflected in λ.

Additionally, this expression for the MrS accounts for the effect of variation in 
the marginal product of resources used to promote the survival of newborns. This 
effect is analogous to how different marginal utilities of consumption affect the MrS 
in a simple standard model of intertemporal choice.

Consider now why younger individuals might be “too impatient “ and older indi-
viduals “too patient,” in terms of the MrS. First: Why do younger individuals seem 
more impatient than implied by the sum of the rate of mortality and the popula-
tion growth rate? Second: Why, on the other hand, do older individuals seem more 
patient than this?24 It is convenient to start with adults.

The component of the MrS that goes beyond mortality and population growth is  
p  0  ′  ( r τ )/ p  0  ′  ( r τ+1 ). If the transfers  r τ  increase with age, this term would increase impa-
tience since

(10)   
 p  0  ′  ( r τ ) _  p  0  ′  ( r τ+1 )

   > 1.

It is relevant here that average productivity for hunter-gatherers increases until 
age 45 or so.25 We then hypothesize that productivity and transfers are correlated. 
With a reproductive career that starts at 15, say, the model accordingly predicts 
greater impatience, in terms of the MrS, for the age range 15–  45, than implied by 
mortality and population growth.26

Once the transfers  r τ  decrease with age, on the other hand, this term would then 
reduce impatience, as in MrS, since

(11)   
 p  0  ′  ( r τ ) _  p  0  ′  ( r τ+1 )

   < 1.

The flip side of the prediction for younger adults is then that the model predicts 
that older individuals, whose output is declining, would be “too patient.” From the 
hunter-gatherer data, this prediction would apply to those over 45 years old.27

We now complete the picture for younger individuals by considering the impa-
tience of children. For children of age τ = 1, … , m − 2, we have

 Mr S τ  =   λ p  τ  ′  ( i τ ) v τ  +1   __   p τ ( i τ ) p  τ  +1  ′  ( i τ  +1 ) v τ  +2 
  .

24 See Anderson et al. (2008), and Bishai (2004), for example, for evidence on these two assertions.
25 See figure 3 in Kaplan and Robson (2009), for example.
26 The correlation of productivity and transfers concerns the endogenous variable  r τ  and it may not hold for all 

possible specifications. It is important then to verify that there are assumptions on the primitives that ensure this 
property holds. Suppose, for example, that  u τ  = u, a constant, for all τ = m, … , T and that the own survival rates are 
also independent of age, given by  p τ (s) = p(s) = β s γ , where β, γ > 0, and γ is small. In this case, it follows that  s τ  
must be small (but positive), so that variation in the  r τ  must account for most of the variation in the  i τ   .

27 A more general model than that here would allow for transfers to more than one age of offspring, or to grand-
children. This would mean that individuals who were beyond reproductive age would still value the resources they 
could use to make these transfers. This issue is taken up in the Conclusion.
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However, since  u τ  = 0 for τ = 0, … , m − 1 it follows that

  v τ  =    p τ ( i τ ) v τ+1  _ λ  , τ = 1, … , m − 1,

so that

 Mr S τ  =    p  τ  ′  ( i τ ) p τ+1 ( i τ+1 )  __   p  τ  ′  +1( i τ+1 ) p τ ( i τ )
  , τ = 1, … , m − 2.

This expression for the impatience of children is not directly connected to the sur-
vival rate or to the rate of population growth, in contrast to the analogous expression 
for the impatience of adults.

At the transition from childhood to adulthood, at age τ = m − 1, we have the 
special case that

 Mr S m−1  =    λp  m−1  ′  ( i m−1 ) v m 
  __   p m−1 ( i m−1 ) p  0  ′  ( r m )   .

How impatient then are children? It is helpful here to define  δ τ ( s τ ) = − ln( p τ ( s τ )) 
as the continuous time mortality rate implied by  p τ ( s τ ), so  δ  τ  ′  ( s τ ) < 0. It follows that 
the impatience of children derives from the change in the derivative of this mortality 
rate. That is, Mr S τ  > 1 for τ = 1, … , m − 2 if and only if

(12)  δ  τ  ′  ( i τ ) <  δ  τ+1  ′  ( i τ+1 ) < 0.

This condition requires that the marginal benefit of resources that decrease the mor-
tality rate is higher for younger ages, and we assume that it is satisfied.

The impatience of children, as in the MrS, does not depend directly on mortality 
rate or population growth, and may then be excessive, complementing the results 
above for younger adults.28

How does the impatience of children depend on age? For τ = 2, … , m − 2, it 
 follows readily that Mr S τ−1  > Mr S τ  > 1 if and only if

(13)  √ 
__

   δ  τ−1  ′  ( i τ−1 ) δ  τ+1  ′  ( i τ+1 )   > −  δ  τ  ′  ( i τ ) > 0.

We assume this condition holds in order to generate the decreasing pattern of time 
preference usually ascribed to children. (See Bettinger and Slonim 2007.)29

28 It plausible but not certain that this is true for infants, since they have extremely high but hard to measure 
rates of time preference but mortality rates that are high even now, but were still higher in our evolutionary past. 
The model need not take a stance on this.

29 An apparently significant omission from the above model concerns the growth of children. That is, children 
allocate significant resources to somatic growth as well as to survival. Explicit treatment of this is omitted for 
 simplicity and since the focus here is rather on adults. However, including this application for resources may not 
make a huge qualitative difference. That is, the high marginal product of resources in promoting growth early in 
life would tend to reduce the resources available for survival. This would reinforce the above observations, since 
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To sum up the expressions obtained here for the rate of time discounting:

THEOREM 2: in the current model of transfers without sex, the marginal rate of 
intertemporal substitution for children, those of age τ = 1, … , m − 2 is given by

 Mr S τ  =    p  τ  ′  ( i τ ) p τ+1 ( i τ+1 )  __   p  τ+1  ′  ( i τ+1 ) p τ ( i τ )
   .

under equations (12) and (13), children exhibit a rate of time discounting, from their 
MrS, that is positive, but decreasing with age. At the transitional age of τ = m − 1, 
a child has

 Mr S m−1  =   λ  p  m−1  ′  ( i m−1 ) v m 
  __   p m−1 ( i m−1 ) p  0  ′  ( r m )   .

on the other hand, the marginal rate of intertemporal substitution for adults, those 
of age τ = m, … , T − 1, is given by

 Mr S τ  =   λ  p′  0 ( r τ ) _   p τ ( s τ )  p′  0 ( r τ+1 )
   .

Adults exhibit impatience, as derived from their MrS, that is at first excessive rela-
tive to the mortality and population growth, but then too small, assuming that trans-
fers to newborns track output, as in the discussion of equations (10) and (11).

The predictions obtained here apply literally to a hunter-gatherer society. In par-
ticular, it is plausible that individuals in such a society would be more impatient than 
dictated by mortality and population growth when younger, but less impatient when 
older. How might these predictions translate to a modern setting?

Suppose that what was hard-wired was not the specific fashion that the various 
functions here depend on their arguments, nor even these arguments themselves 
necessarily, but just their interpretation as the production and survival of offspring 
and own survival. These arguments are evolutionarily proximate inputs for the pro-
duction and nurturing of offspring. The relevance of some of these inputs, such as 
sex, might have been rather constant over time, only to change rather recently. The 
relevance of particular commodities, on the other hand, might have changed dra-
matically. Suppose individuals flexibly and perhaps consciously accounted for how 
the values of these functions are influenced by their choices.

That is, what this approach gives us is an evolutionary basis for utility, with 
a time-invariant component, as represented in the above model by the function  
 p 0 (·). Now observe that the age profile of individual output in modern societ-
ies is qualitatively very similar to that for hunter-gatherers. Moreover, although 
there is now a market for saving and borrowing, it remains rather imperfect, 

the rate of time preference denominated in resources could still be taken in the form given above, except only that 
the resource argument would now refer to the resources devoted to survival rather than the total resources available.
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perhaps accounting for the observation that consumption still tracks income to a 
pronounced extent (See Browning and Lusardi 1996). The above analysis might 
then well apply, perhaps in somewhat less dramatic way and mutatis mutandis, to 
modern economies.

B. Transfers and Sex

Reconsider the model of Section IIA after the introduction of sexual reproduc-
tion. We derive the new equilibrium allocation of resources for each adult between 
his/her offspring and his/her own survival. We hypothesize that there may be mul-
tiple types, where each type is characterized by a particular age profile of alloca-
tions. Mating pairs must be the same age and mating is random with respect to type. 
We simplify the process of sexual reproduction by supposing that each offspring 
inherits each of the resource allocation profiles of her parents with probability 1/2. 
That is, there is so-called “haploid sex.”30 An equilibrium resource allocation profile 
will have the property that a small number of mutants with any alternative allocation 
profile will do worse. We will consider then the growth process for a small number 
of mutants with an arbitrary resource allocation profile in a population with some 
given allocation profile.31

As before, individuals of ages τ = 1, … , T have incomes  i τ  > 0. Newborns have 
income zero. Each adult of age τ = m, … , T now transfers an amount  r τ /2 to each 
of the 2 u τ  > 0 newborn joint offspring, keeping  s τ  to promote her own survival 
to age τ + 1. The budget constraint is  s τ  +  u τ   r τ  =  i τ  for τ = 1, … , T. As before, 
children use all their resources on their own survival, given  u τ  = 0, so that  s τ  =  i τ  
for τ = 0, … , m − 1. Also  s T  = 0 so that  r T  =  i T / u T . The survival functions  p τ (⋅) for 
τ = 0, … , T − 1 are as specified for the model with transfers but without sex in the 
previous subsection. Thus the model of transfers with sex has been constructed to 
be strictly comparable to the model without sex, with directly comparable nota-
tion. The allocation of resources in the model without sex is the optimal allocation 
for the model with sex, where the allocation will be distorted by the free-rider 
problem.32

Suppose then that the population resource allocation profile is {  _ s  τ   ,   
_
 r  τ  }  τ  =1  T

   and con-
sider a rare mutant with profile { s τ   ,  r τ  }  τ  =1  T

  .33 This mutant is subject to the growth 
process given by

  n t+1  =  n t  L,

30 Humans are actually diploid, so having two copies of each gene at each of a large number of “loci.” At each 
locus, each offspring gets a randomly chosen gene from the mother and a randomly chosen gene from the father. 
Diploid sex introduces a number of complications that seem largely tangential to the present purpose.

31 This general “non-invadability by mutants” condition could also be applied to the model of transfers without 
sex, and would generate the same results already found more directly for that case. It is needed here due to the game 
theoretic nature of the problem with sex; it was not needed without sex, since that issue is merely decision-theoretic.

32 There is no advantage to sex in the present context. See Perry, Reny, and Robson (2008) for a discussion of 
the puzzle posed by the need to find the advantage of sex, of biparental sex in particular.

33 For expositional simplicity, we restrict attention to pure population allocation profiles. However, even if there 
is a mixture of profiles in the population, the best reply by a rare mutant will always be a pure profile. It follows that 
the only possible evolutionarily stable equilibria are then pure.
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where  n t  is row-vector describing the mutant adult population at date t so that 
  n t  = ( n  1  t

  , … ,  n  T  t
  ). The Leslie matrix is now

L =  

 p 0 (    
_
 r  1  +  r 1  _ 2  ) u 1  p 1 ( s 1 ) 0 . . 0

   .

 p 0 (    
_
 r  2  +  r 2  _ 2  ) u 2 0  p 2 ( s 2 ) 0 .. 0

... . . . . .

... . . . . 0

 p 0 (    
_
 r  T−1  +  r T−1  _ 

2
  ) u T−1 0 . . 0  p T−1 ( s T−1 )

 p 0 (    
_
 r  T  +  r T 

 _ 
2
  ) u T 0 . . . 0

With the exception of the first column, this is identical to the Leslie matrix 
for the case without sex, and holds for the same reason—  each mutant of age 
τ = 1, … , T − 1 survives to age τ + 1 with probability  p τ ( s τ ). Consider then the 
first column. Since the mutant is rare, essentially all the pairings of mutants are 
with nonmutants. In each such pairing, each of the 2 u τ  newborn offspring receive 
(  _ r  τ  +  r τ )/2 but only  u τ  of these offspring are also mutants. The τ   th term in the first 
column then reflects the contribution of mutant age τ parents at date t to mutant 
one year olds at date t + 1.

The limiting growth rate of the mutant type under the assumption that the 
mutant remains a small fraction of the population is relevant to evaluate whether 
the original type is robust to invasion by the mutant. The Euler-Lotka equation 
becomes

(14) 1 =   
 p 0 (    

_
 r  1  +  r 1  _ 

2
  ) u 1 

  _ λ   +   
 p 0 (    

_
 r  2  +  r 2  _ 2  ) p 1 ( s 1 ) u 2 

  __ 
 λ 2 

   … 

 +   
 p 0 (    

_
 r  T  +  r T 

 _ 2  ) p 1 ( s 1 ) …  p T−1 ( s T−1 ) u T 
   ___  

 λ T 
  , 

where λ is this limiting growth rate. The most basic biological view of preferences 
here, as before, is λ, but a useful economically relevant representation is the right-
hand side of this equation. That is, maximizing this expression, given the optimal 
growth factor, is a necessary condition for maximizing this growth factor.

The limiting population proportions, q, can again be taken to be q 
= (1,    p 1 ( s 1 )

 _ λ  , … ,    p 1 ( s 1 )…   p T−1 
 _ 

 λ T−1 
  ), with the normalization that  q 1  = 1. Further, the vector of 

reproductive values still satisfies L v T  = λ v T , and we set  v 1  = 1. In this case,
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(15)  v τ  =   
 p 0 (    

_
 r  τ  +  r τ  _ 2  ) u τ 

  _ λ   +    p τ ( s τ ) v τ+1  _ λ   for τ = 1, … , T − 1,  

with  v T  =   
 p 0 (    

_
 r  T  +  r T 

 _ 2  ) u T 
  __ λ   .

These equations can again be solved by backwards recursion to obtain each  v τ  as 
follows

(16)  v τ  =   1 _ λ   { p 0 (    
_
 r  τ  +  r τ  _ 2  )  u τ  +   

 p 0 (    
_
 r  τ+1  +  r τ+1 

 _ 2  ) p τ ( s τ ) u τ+1 
  __  λ   

 + ⋯ +  p 0 (    
_
 r  T  +  r T 

 _ 2  ) p τ ( s τ )… p T−1 ( s T−1 ) u T / λ T−τ } , 
for τ = 1, … , T − 1.

This expression fully spells out the reproductive value of an age τ = m, … , T − 1 
adult. However, dynamic programming again provides a more compact and elegant 
formulation of the problem. In this formulation, individuals recursively maximize 
the appropriate concept of reproductive value, which we then interpret as their utility.

THEOREM 3: The unique allocations { s τ   ,  r τ  }  τ    =m  T−1
   that satisfy the dynamic program-

ming problem

(17)   max    
   r τ   ,  s τ   ≥0

                    u τ    r τ   +   s τ   = i τ 
  
    
 u τ    p 0 (    

_
 r  τ  +  r τ  _ 2  )  __ λ   +    p τ ( s τ ) v τ+1  _ λ   ≡   max    

   r τ   ,  s τ   ≥0
                    u τ   r τ  +  s τ   = i τ 

  
   v τ ( r τ   ,  s τ ), 

along with equation (15), are the unique solution to the problem of maximizing the 
limiting growth rate of a “small” number of mutants with allocations { s τ   ,  r τ  }  τ  =m  T−1

   
embedded in a population using an arbitrary allocation {   ̄ s  τ   ,    ̄ r  τ  }  τ    =m  T−1

  . That is, equa-
tions (15) and (17) characterize the unique “best reply mutant allocation.”34

PROOF: 
Dynamic programming implies that the unique solution to equations (15) and (17) 

maximizes the RHS of equation (14), for an arbitrary λ > 0. If W(λ) denotes this 
maximized value of the RHS of equation (14), then it follows readily that (i) W(⋅) is 
continuously differentiable, with W  ′(λ) < 0, for all λ > 0 ; that (ii) W(λ) → ∞, as 
λ → 0 ; and that (iii) W(λ) → 0, as λ → ∞. Hence there exists a unique  

_
 λ  satisfying 

34 It is not hard to show that this best reply mutant allocation profile would remain unique against an arbitrary 
population mixture of types with various allocation profiles. Hence, the evolutionarily stable equilibrium derived 
below remains unique even if mixtures are permitted.
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W(  ̄  λ ) = 1. This is then the maximum growth factor, since if λ >   ̄  λ , so that W(λ) < 1, 
then there is no profile of resource allocations such that λ satisfies equation (14).35

Under the conditions imposed on the functions  p τ (·), τ = 0, m, … , T − 1, if these 
best reply allocations are interior, they must satisfy the first-order conditions

(18)   
 p  0  ′  (    

_
 r  τ  +  r τ  _ 2  )  _ 
2
   =  p  τ  ′  ( s τ ) v τ  +1 .

Conversely, if these first-order conditions are satisfied for the mutant allocations 
{ s τ   ,  r τ  }  τ  =m  T−1

    , then these allocations characterize the mutant best reply to the alloca-
tions {  _ s  τ   ,   

_
 r  τ  }  τ   =m  T−1

   .
We now characterize the unique evolutionarily stable outcome with transfers and 

sex. It is sex, of course, that implies that there are now strategic interactions, in 
contrast to the version of this model with no sex. If the resource allocation profile 
{  _ s  τ   ,   

_
 r  τ  }  τ    =1  T

   is evolutionarily stable, it is necessary that one best reply choice of mutant 
profile { s τ   ,  r τ  }  τ=1  T

   against the profile {  _ s  τ   ,   
_
 r  τ  }  τ  =m  T

   is {  _ s  τ   ,   
_
 r  τ  }  τ  =m  T

   itself.
Consider then the interior36 allocation for the population given by {  _ s  τ   ,   

_
 r  τ  }  τ   =m  T−1

   with 
reproductive values    ̄  v  τ   , uniquely characterized by

(19)   
 p  0  ′  (  

_
 r  τ ) _ 

2
   =  p  τ  ′  (  

_
 s  τ )  

_
 v  τ+1 , τ = 1, … , T − 1, 

and the recursive relationship, equation (15). Suppose that  
_
 λ  is the implied growth 

rate from equation (14). It is clear from equation (18) that setting { s τ   ,  r τ  }  τ  =m  T−1
    

= {  _ s  τ   ,   
_
 r  τ  }  τ   =m  T−1

   is then the unique mutant best reply to a population that chooses 
{  _ s  τ   ,   

_
 r  τ  }  τ   =m  T−1

  .37 Hence  {  _ s  τ   ,   
_
 r  τ  }  τ   =m  T−1

   is evolutionarily stable. Of course, it also follows 
that { v τ  }  τ  =1  T

   = {  _ v  τ  }  τ  =1  T
   and λ =  

_
 λ . Altogether, we then have

THEOREM 4: The interior allocations {  _ s  τ   ,   
_
 r  τ  }  τ   =m  T−1

   satisfying equations (14), (15), 
and (19), with { s τ   ,  r τ  }  τ  =m  T−1

   = {  _ s  τ   ,   
_
 r  τ  }  τ   =m  T−1

   characterize the unique evolutionarily stable 
equilibrium allocation of the present model of transfers and sex.38

Equation (19) implies that the unique equilibrium choice can be characterized as 
maximizing the “wrong” criterion from the point of view of each couple, namely, 
( u τ   p 0 (  

_
 r  τ )/2) +  p τ (  

_
 s  τ ) v τ+1 . Thus sex leads to an attenuation of the myopic incentive to 

transfer resources to newborn offspring.39 In general, with diploid sex, this is because 
each of these offspring have only probability   1 _ 2   of sharing a rare mutant gene pres-
ent in one of the parents. With haploid sex, the probability of each offspring being a 
carbon copy of the mutant parent is   1 _ 2   . Since the parent is unable to  distinguish these 

35 More detailed proofs of (i)–(iii) are analogous to those in the proof of Theorem 1.
36 Equation (17) implies that the property of being a best reply to itself cannot be satisfied by any corner solution.
37 This holds over all possible { s τ   ,  r τ  }  τ  =m  T−1

    , whether interior or not.
38 This construction restricts attention to symmetric equilibria, as usual.
39 This is “myopic” in that it holds for given  v τ+1 .



194 AMEricAN EcoNoMic JourNAL: MicroEcoNoMicS NoVEMBEr 2012

copies from the others, transfers cannot condition on this. This result is  familiar in 
biology as Hamilton’s rule (see Hamilton 1964, but also Bergstrom 1995).40 From 
an economic point of view, children are a public good to their parents, and the 
undercontribution that arises is also to be expected.

Since the effect of sex is as if the true survival function for newborns  p 0 (⋅) 
were replaced by  p 0 (⋅)/2, it straightforward to see that the result corresponding to 
Theorem 2 still holds:

THEOREM 5: in the model of transfers with sex, the marginal rate of intertemporal 
substitution for children, those of age τ = 1, … , m − 2 is given by

 Mr S τ  =    p  τ  ′  ( i τ ) p τ+1 ( i τ+1 )  __   p  τ+1  ′  ( i τ+1 ) p τ ( i τ )
   .

under equations (12) and (13), children exhibit a rate of time discounting, from their 
MrS, that is positive, but decreasing with age. At the transitional age of τ = m − 1, 
a child has

 Mr S m−1  =   2λ p  m−1  ′  ( i m−1 ) v m 
  __   p m−1 ( i m−1 ) p  0  ′  (   ̄ r  m )   .

on the other hand, the marginal rate of intertemporal substitution for adults, those 
of age τ = m, … , T − 1, is given by

 Mr S τ  =   λ p  0  ′  (  
_
 r  τ ) _   p τ (  

_
 s  τ ) p  0  ′  (  

_
 r  τ+1 )

   .

Adults exhibit impatience, as derived from their MrS, that is at first excessive rela-
tive to the mortality and population growth, but then too small, assuming that trans-
fers to newborns again track output, in the case with sex.

Although the myopic bias against transfers to newborns is then clear, the ultimate 
effect of such a bias is less clear.41 After all, the underlying rationale for promoting 
your own survival instead of that of your newborns can only be future reproduction, 
and each of these future offspring will also only be   1 _ 2   relatives. However, it is now 
shown that the overall effect may still be that transfers to newborns are reduced 
by sex.

There is a minor complication that needs to be first addressed. This is that sex 
will reduce the growth rate, other things equal.42 Indeed, the “social optimum” for 
maximizing λ with sex is the problem as posed without sex.

40 This biological motive for undercontribution arises despite all individuals being genetically identical in 
the equilibrium.

41 That is, the effect of sex on the  v τ+1  needs to be accounted for.
42 Suppose we take this observation at face value, so that  

_
 λ  <  λ * , say, where  

_
 λ  and  λ *  are the population growth 

rates with and without sex, respectively. It then remains true that sex decreases impatience.
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However, perhaps the most realistic comparison to make is one where both the 
asexual and the sexual types have reached saturation, so that the growth factor in 
either case is 1. Other things cannot then be equal. There must be less selection 
pressure with sexual reproduction than without. A plausible possibility is that this 
appears as a multiplicative improvement in the survival functions. This improve-
ment will be shown to merely amplify the effects.

More specifically, suppose that the survival probabilities now have the form 
B(N)  ̂  p  τ (·), for τ = 1, … , T − 1, where N is total population, and where the functions 
  ̂  p  τ (·) have the same qualitative properties as  p τ (·), for τ = 1, … , T − 1. The  function 
B(·) is continuously differentiable and strictly decreasing. Further, we assume 
that B(·) is such that the growth factor of either the nonsexual or sexual population is 
greater than 1 for small enough N and less than 1 for large enough N. It follows that 
either population will achieve a steady state with zero growth at uniquely determined 
population levels,  N  *  and  

_
 N , for the nonsexual and sexual case, respectively. Since, at 

a population level of  
_

 N , the nonsexual population would grow, it follows that  N  *  >  
_

 N .
The upshot is that, if we denote the survival probabilities with sex by   

_
 p  τ (·) and 

those without sex by  p τ (·), then there exists β > 1 such that43

(20)   
_
 p  τ ( s τ ) = β p τ ( s τ ) ∈ [0, 1]

for all  s τ  ≥ 0 and for τ = 1, … , T − 1.44 We assume these shifts do not affect 
 newborns, so   

_
 p  0 (r) =  p 0 (r) for all r ≥ 0.

For the case of transfers without sex, we showed that

  p  0  ′  ( r  τ  * ) =  p  τ  ′  ( s  τ  * ) v  τ+1  *  , τ = m, … , T − 1,

where these optimal choices are now denoted by  r  τ  *  and  s  τ  *  and the notation  v  τ  *  is 
introduced to distinguish the two sets of shadow prices.

With sex, in contrast, we have that

   
 p  0  ′  (  

_
 r  τ ) _ 

2
   = β   p  τ  ′  (  

_
 s  τ )  

_
 v  τ+1 , τ = m, … , T − 1.

In order to show that   
_
 r  τ  <  r  τ  * , and   

_
 s  τ  >  s  τ  *  , it is then enough to show that 

  
_
 v  τ   +1  >  v  τ  +1  *  /2, for τ = m, … , T − 1. Indeed, this claim holds at τ = T − 1 because  

v  T  *   =   _ v  T  =  p 0 ( i T / u T ) u T . Adopt then the inductive hypothesis that   
_
 v  τ  +1  >  v  τ  +1  *  /2 for 

some τ + 1 ∈ {m + 1, … , T − 1}. It follows that

   
_
 v  τ  =   p 0 (  

_
 r  τ ) u τ  +   _ p  τ (  

_
 s  τ )  

_
 v  τ   +1 

 >     p 0 (  
_
 r  τ ) u τ  _ 

2
   +   _ p  τ (  

_
 s  τ )  

_
 v  τ   +1 .

43 Of course, β = B( 
_

 N  )/B( N     * ) > 1.
44 The key results here concern adult impatience. These results hold under considerably weaker conditions 

concerning the effect of reduced selection pressure on survival. However, the multiplicative shift of survival prob-
abilities considered here simplifies the incidental results for children.
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Further, since (  _ r  τ   ,   
_
 s  τ ) maximizes this last expression,

   
_
 v  τ  >     p 0 ( r  τ  * ) u τ  _ 

2
   +   _ p  τ ( s  τ  * )  

_
 v  τ   +1 

 >     p 0 ( r  τ  * ) u τ  _ 
2
   +    p τ ( s  τ  * ) v  τ+1  *  

 _ 
2
   =    v  τ  

* 
 _ 

2
  ,

completing the inductive proof. Hence sex unambiguously reduces all flexible 
 transfers, those at ages τ = m, … , T − 1, and increases the corresponding amounts 
used to promote own survival to the next period.

Sex thus reduces the quality of offspring, in that it involves reduced transfers 
to newborns and hence reduced survival of all of these to age one. The flip side of 
the coin is that adult survival rates are increased by sex relative to the model with 
no sex.

What is the effect of sex on impatience, as in the MrS ? It follows readily that 
there is no effect of sex on impatience of children of age τ = 1, … , m − 2. The effect 
on impatience of the transitional child of age τ = m − 1 may be ambiguous without 
further assumptions, but is of limited interest.

The marginal rate of intertemporal substitution with sex is as described in 
Theorem 5. Denoting the resource allocation choices made with sex by    ̄  r  τ  and    ̄  s  τ   
for τ = 1, … , T, the marginal rate of intertemporal substitution for adults, those of 
age τ = m, … , T − 1, is

(21)  Mr S  τ  s   =   
  ∂λ _ ∂ i τ 

  
 _ 

  ∂λ _ ∂ i τ+1 
  
   =    p  0  ′  (  

_
 r  τ ) _   p  0  ′  (  

_
 r  τ  +1 )  

_
 p  τ (  

_
 s  τ )
   =    p  0  ′  (  

_
 r  τ ) __   p  0  ′  (  

_
 r  τ  +1 )β  p τ (  

_
 s  τ )
  , τ = 1, … , T − 1.

The derivation of this expression essentially involved canceling a factor of 1/2 from 
the numerator and the denominator. That is, since the individual deflates the value of 
resources transferred to all offspring, there is no direct effect of sex on impatience. 
There remains an indirect effect, however, that operates through enhanced survival 
of the adult from one age to the next.

Consider then the effect of sex on the impatience of adults, as in the MrS. Let the 
resource allocation choices made by adults in the model without sex be then given 
by  r  τ  *  and  s  τ  * , for τ = m, … , T. Recall their MrS is then

(22) Mr S  τ  *  =   
  ∂λ _ ∂ i τ 

  
 _ 

  ∂λ _ ∂ i τ   +1 
  
   =    p  0  ′  ( r  τ  * ) _   p  0  ′  ( r  τ  +1  *  ) p τ ( s  τ  * )

  , τ = m, … , T − 1.

When we compare the expressions in equation (21) and equation (22), there is a 
clear effect of sex on one component of the MrS, the term corresponding to the pure 
rate of time preference. That is, we have that

   1 _ β  p τ (  
_
 s  τ )
   <   1 _  p τ ( s  τ  * )

  , τ = m, … , T − 1,
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since sex unambiguously increases adult survival probabilities. The effect of the 
remaining component of MrS, which concerns the derivatives of the survival rates 
of newborns, is less clear in general, and might sometimes work in the opposite 
direction. In any case, one case where this remaining component has no effect is 
if the survival rate of newborns is linear in resources. That is, in addition to the 
hypotheses of Theorem 4, suppose that  p 0 ( r τ ) = α r τ   , for some α > 0 and that 
adults of age τ = m, … , T − 1 have interior optimal resource allocations, with or 
without sex. Now, sexual reproduction strictly decreases the MrS of adults of age 
τ = m, … , T − 1, but it has no effect on the MrS of children of age τ = 1, … , m − 2.

THEOREM 6: in the model of transfers with sex, suppose that the same growth 
 factor, λ = 1, is attained as in the model without sex by means of the shift described 
in equation (20). it follows that all adults of age τ = m, … , T − 1 transfer an 
amount   

_
 r  τ   , say, to their newborn offspring which is strictly less than the amount 

transferred in the model without sex,  r  τ  *   , say. Equally, the amount such adults use 
for their own survival   

_
 s   τ   , say, strictly exceeds that in the model without sex,  s  τ  *   , say. 

As in the discussion of equation (22), this decreases the pure rate of time preference, 
and may decrease the rate of time discounting as in the MrS.

The central message of Rogers (1994) was that sex is a key factor leading to 
impatience. In this model, however, this conclusion does not generally hold.

III. Conclusions

The model of transfers adopted here is one of the more tractable possible. Indeed, 
the model is mathematically similar to the benchmark model presented in Section I. 
It is not formally very different to suppose that newborns have an endogenous sur-
vival rate than it is to suppose the number of these is endogenous. In both cases, 
there is an endogenous number of surviving age one individuals. Indeed, since all 
individuals who are one or more are identical, the notion of reproductive value can 
be straightforwardly applied to all individuals of age one or more, despite the dif-
ferences among newborns. However, the issues here are conceptually important and 
revealing. It is generally true that differentiated offspring require a notion of repro-
ductive value that is not the simple expected discounted value of newborns. Further, 
it is only when the effect of transfers is confined to newborns that matters are as 
straightforward as they are here.45

In terms of accounting for the age profiles of empirically observed rates of time 
preference, it might be that the ideal model would combine intergenerational trans-
fers, along the lines developed here, and aggregate mortality shocks, as in Robson 
and Samuelson (2009). The key effect of aggregate uncertainty in Robson and 
Samuelson (2009) was to allow the pure rate of time preference to exceed the level 
implied by population growth and mortality, in a observational sense. This should 
be superimposed on the effects found here. A further effect of aggregate uncertainty 

45 However, a model in which transfers were made at birth, but had effects that lasted more than one period, 
would seem likely to remain tractable.
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in Robson and Samuelson was that pure rates of time preference might decline with 
age and perhaps this effect would also survive in an integrated general model. Such 
a general model, however, would clearly push the limits of analytic feasibility.

It would also be of interest to generalize the system of transfers substantially. It 
is realistic, after all, to allow these transfers to be made by parents to older children 
as well as to newborns. Further, it is also realistic to allow transfers from parents 
who are beyond the age of last reproduction, not only to their children but also to 
their grandchildren. Such a generalization would form a useful counterpart to the 
investigations of Kaplan and Robson (2009). Whereas Kaplan and Robson (2009) 
consider a full model of social intergenerational transfers with no sex; such a gener-
alization would involve more restricted intra-family transfers and sex.

Such more general models of transfers often become rapidly intractable. It is not 
hard to write an apparently simple model in which the transfer that a parent will 
make to a child depends not merely on the age of the parent herself, but on the age 
of her parent when she was born, the age of her grandparent when her parent was 
born, et cetera. Even if strong simplifying assumptions are made that prevent such 
snowballing complications, there remain a huge number of transfers that might be 
made in principle, not all of which will have interior solutions, so that the model will 
be complex to analyze.

In this light, the present model is valuable as illustrating that some central results 
are likely to be robust—such as the maximization of the appropriate concept of 
reproductive value in a dynamic programming context. More specifically, the model 
suggests reasons why children and younger adults may be too impatient, and older 
adults too patient, relative to the basic model. Finally, it provides a counterexample 
to any general claim that sex would generate an inappropriately high rate of time 
discounting. That is, although sex distorts the pure rate of time preference, it may 
well reduce it. Indeed, the reason why sex fails to sharply increase impatience seems 
likely to be a feature of many more general models.

It is important to note that, despite varying rates of time discounting, there can 
be no preference reversals in a frictionless model like the models used here. In the 
first place, time preference is tied here to age, rather than to time into the future, as 
is conventional in economics in general and in discussions of hyperbolic discount-
ing in particular. Even more fundamentally, if a particular choice involving two 
remote ages were optimal when considered at some young age, evolved prefer-
ences would operate in models like these to ensure that such a choice would always 
be made in the same way even when considered at ages that were closer to the ages 
in question.

Another issue that arises with respect to this model is as follows. There is here 
a unique evolutionarily stable outcome. What then accounts for the heterogeneity 
in time preference actually observed? Most basically, such questions also trouble 
biologists. That is, why do we typically observe substantially dispersed phenotypes? 
One intriguing answer is provided by models of aggregate uncertainty in which 
the optimal genotype involves idiosyncratic randomization.46 Another answer that 

46 See Bergstrom (1997) for example.
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might be especially relevant here is: time preference is not entirely genetically con-
trolled but is influenced by experience as well. That is, for example, individuals who 
survive traumatic adverse economic outcomes might well become more risk-averse 
and more patient. Observed heterogeneity of preferences then simpy reflects hetero-
geneity in personal economic histories. However, this approach takes us even further 
from conventional economics and is left for future research.

The model of transfers with sex raises the following interesting issue. The game 
between the two parents is one where offspring survival is a public good. The under-
contribution that results is not surprising in that economic light and it is in complete 
agreement with the biological perspective as in “Hamilton’s rule.” However, this 
prediction does not seem iron clad here. It would be more convincing in a model 
where the male contributes nothing to raising offspring, as is typical of most mam-
malian species other than our own. That is, suppose that the resources are contrib-
uted to offspring only by the female, in the complete absence of the male. Although 
this absence would induce her to contribute more, she would still have a marginal 
incentive to make transfers that was reduced on account of sex by   1 _ 2  . When both 
parents are present and contribute, on the other hand, there is an opportunity to find 
ways around this undercontribution problem. These range from the biological at 
one end—  endocrinology forging a pair bond between parents (“falling in love”), 
for example—to selfishly rational behavior at the other—as in the familiar ways of 
inducing cooperation in repeated games.

Time discounting is perhaps the key element in the debate over global warming. 
Most famously, Stern (2006) generates a vastly more aggressive approach to the issue 
than does Nordhaus (1994). This derives largely from Stern’s application of a much 
smaller pure rate of time preference. See Nordhaus (2007) and Dasgupta (2008). 
Indeed, Stern’s (2006) use of pure rate of time preference near zero has attracted 
criticism from economists as not being realistic. Although Stern’s (2006) position 
was intended as ethical rather than realistic, a theme in the subsequent literature on 
global warming has been to obtain results similar to Stern’s (2006) without direct 
appeal to low pure rates of time preference. Gollier (2010), for example, considers 
a model with two goods—  economic and ecological. Under some assumptions, it 
follows that the ecological rate of discount derives from the ecological growth rate 
which might then fall short of the economic discount rate similarly derived from the 
economic growth rate. As another example, Weitzman (2010) considers a model in 
which the marginal product of capital is taken to be exogenous and uncertain at the 
start, although it is fixed in the long run. In this model, a higher coefficient of relative 
risk-aversion lowers the rate of discount below the risk-free rate.

How might the current analysis bear on the global warming debate? A basic issue 
concerns the meaning of ethical judgments. Binmore (2005), for example, argues 
cogently that our actual ethical judgments have an evolutionary basis. This position 
would not seem to limit the freedom of participants in the global warming debate to 
propose any ethical position, but rather constitutes a prediction about the guideline 
that is ultimately implemented. What does the present analysis predict under such a 
positive interpretation of ethics? It could be that the divergence between the individ-
ual and social rates of time discounting was closed as discussed in the penultimate 
paragraph above. This would reinforce the Nordhaus (2007) position in the sense 
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that the actual implemented social discount rate would equal the private discount 
rate. More interestingly, if this divergence were not closed, the present model dem-
onstrates a contrarian possibility—that the actual implemented social discount rate 
would exceed the individual discount rate.47
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