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Abstract

Symmetric equilibria are constructed for a class of symmetric auction games. The games all
have two identical bidders bidding in three simultaneous first-price sealed-bid auctions for identical
objects. Information is complete and the bidders’ marginal valuations increase for the second object
and then decrease for the third. In all cases the support of the mixture that generates the equilibrium
is two-dimensional, and it surrounds a three-dimensional set of best responses. This appears to be a
previously unknown structure.
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1. Introduction

Offshore oil leases and spectrum licenses are examples of objects sold by the US
government through simultaneous auctions of one kind or another. Other examples of
simultaneous auctions are abundant around the world. Situations for which a simultaneous
design is often recommended are when a bidder’s valuation for one object is typically
dependent on what other objects the bidder may win. A simultaneous auction allows
bidders to express their preferences over sets of objects through their bids, although it
does not necessarily result in an assignment that is either efficient or revenue maximizing
for the seller.
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Though details of simultaneous design rules differ, they all tend to confront bidders
with an “exposure problem”: For example, a bidder whose valuation for a set of objects
exceeds the sum of his valuations for the separate items that make up the set may be
tempted to bid above the separate stand-alone valuations of the individual items in hopes
of winning the set, risking having overbid on pieces in the event that the grand plan is
unsuccessful. Various measures have been used to soften exposure problems: in spectrum
auctions the simultaneous designs typically involve ascending prices, which allow bidders
time to assess gradually the likelihood of successfully acquiring various combinations of
spectrum blocks; and provisions for bid withdrawals are often included. These measures do
not completely eliminate the problem, however, and the US FCC has recently announced
that it will begin to allow all-or-none bids on subsets of licenses to try to solve the problem
directly?

Despite all the attempts to get around them, surprisingly little is known about the
structure of equilibria in games generated by simultaneous auctions that present exposure
problems® This paper contributes to what is known in a small way: We construct equilibria
for a small class of such auction games. These auctions all involve only three identical
objects, two identical bidders, and complete information. But the class of auctions is
a particularly important one nonetheless, because the bidders’ marginal valuations are
assumed to be first increasing and then decreasing in the number of objects acquired.
For spectrum license auctions, this is a particularly relevant specification: in some such
auctions (e.g., Netherlands 1998, Australia 2000) the spectrum blocks for sale were (by
design) individually too small to be useful by themselves and the total available was much
more than a single bidder could use efficiently (or was allowed to win).

As will be seen, not only was equilibrium structure of the games we analyze here
previously unknown, but the structures turn out to be of a completely new form; we know of
nothing similar in the literature. Furthermore we exhibit a new technique for equilibrium
construction which makes use of a connection between familiar auction models that are
difficult to analyze and unfamiliar ones that are easier. We believe that this technique may
have a broader range of applicability than its use here.

The games in this paper are simultaneous “chopstick” auctions: three identical
chopsticks are sold simultaneously, either in separate first-price sealed-bid auctions or
in separate second-price sealed-bid auctions. There are two bidders, and it is common
knowledge between them that a pair of chopsticks is worth $2 but that a single chopstick
is worth nothing by itself. A third chopstick is worth an additional, ®ringing the total
value of a three-object set tqZ+ «).* (As usual, we assume it is common knowledge
between the bidders that both of them have risk-neutral preferences over money lotteries.)
We call the cases wheke = 0 the “pure chopstick” casesthe equilibria we find for

2 see (Milgrom, 2000) for a discussion of some of the issues that the FCC is confronting.

3 See, however, (Krishna and Rosenthal, 1996; Rosenthal and Wang, 1996).

4 The parametes can be negative. This need not be taken literally; it represents the case where the marginal
value of the third object is less than that of the first, which has been normalized at $0 for convenience. (If the
marginal value of the first object is not zero, the equilibrium structure is modified in a simple way.)

5 Credit goes to Mary Lucking-Reiley for the evocative chopstick name for identical objects that are useless
except in pairs.
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the pure-chopstick first- and second-price auctions are symmetric both across people and
across chopsticks, have particularly simple and beautiful forms, and are valid for all tie-
break rules. Whew # 0, the validity of the constructions depends on specific tie-break
rules that are tied to the specificvalues. We suspect that no equilibria exist when the
tie-break rules are other than the ones that we need to specify, and we suspect that there
are no equilibria other than the ones we have found even under the “right®rules.

While the sealed-bid nature of our auction games makes them atypical of real spectrum
auctions, there are often backup rules in real spectrum auctions that give the auctioneer the
right to call for a final sealed-bid round in certain circumstances (and therefore for which
plans must be made by bidders). Simplicity is, however, the main reason for studying
sealed-bid auctions before attempting to understand ascending ones. Another unrealistic
feature of the chopstick examples is the assumption that the bidders’ valuation schedules
are the same and that this is common knowledge. Again, we opt for simplicity as a research
strategy.

Pure strategies in our games are triples of real numbers (bids) and mixed strategies
are therefore probability distributions ov&#. In the pure chopstick casgs = 0), the
supports of the mixtures that generate the symmetric equilibria in both the first- and
second-price cases, turn out to be the surfaces of regular tetrahedra, and the distributions
themselves turn out to be uniform on these surfaces. In addition, in each case all the points
inside the tetrahedron are pure best responses to the equilibrium mixture. The combination
of the support being the surface of a polyhedron and the set of best responses being the
entire polyhedron is completely unfamiliar to us.

Whenea > 1 and the tie-break rule in case of a tie for all three objects simultaneously at
bids of (2 + «)/3 awards all objects to the same bidder, in both the first- and second-price
case there is obviously a pure-strategy symmetric equilibrium in which both bidders bid
(2+ «)/3 on each object.

When —oco < « < 1 buta # 0, the constructions become more complicated because
the tie-break rule and the equilibrium mixture need to be constructed jointly and ties
occur in equilibrium with probability strictly between zero and one. To accomplish the
task we introduce a new, indirect construction method. First we establish a functional-form
relationship between the symmetric equilibria together with tie-break rules of our chopstick
auctions on the one hand and the symmetric equilibria of another class of simultaneous
sealed-bid auction games for which the tie-break rules turn out not to be critical on the
other hand. Then we construct equilibria for these other games. For these games the
equilibrium mixtures are again supported on the surfaces of symmetric tetrahedra; but
the tetrahedra are no longer regular ones, and the distributions, though symmetric, are no
longer uniform, although they are uniform when restricted to single faces of the tetrahedra.
The tetrahedra and distributions then become deformed when mapped back into equilibria

6 There are two approaches to existence theorems for games like ours. One approach (Dasgupta and Maskin,
1986; Reny, 1999, for example) provides sufficient conditions for existence that depend on the specifics of the
tie-break rules and that are sometimes difficult to check in practice. The other approach is that of (Simon and
Zame, 1990), where existence is proved for at least one (unspecified) tie-break rule. Jackson, et al. (2001) extends
the Simon—-Zame approach to incomplete-information models in which players can provide information beyond
bids that is used to break ties.
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for the original games of interest. The entire equilibrium structure changes continuously
with «, approaching the pure-chopstick equilibria in both cases &sproaches zero.

We begin in Section 2 with the construction of the equilibria for both first- and second-
price auctions in the pure chopstick case. Section 3 is devoted to the indirect construction
for both cases when & « < 1. Section 4 treats both cases when< 0. Section 5
concludes with a discussion of equilibria of related games. Some proofs are relegated to an
Appendix A.

2. Thepure chopstick case

A pure strategy in any of the chopstick-auction games is a triple of real numbers whose
ith coordinate is interpreted as a bid for thh object. A mixed strategy is therefore a
probability measure oveR3. Let the tetrahedrofl” be defined as the convex hull of the
four points:(1, 1, 0), (1,0, 1), (0, 1, 1), and(0, 0, 0). Alternatively,

T={(x,y20:x+y+2<2, x<y+z y<x+z z<x+y}

Theorem 1. The uniform probability measure on the surface S of T generatesa symmetric
equilibrium of the pure chopstick first-price auction game (i.e., when « = 0).

Most of the rest of this section is devoted to a proof of this theorem—showing that each
point in S is a best response to the uniform probability measure.oim fact, we show
also that each point i is a best response. At the end of the section we construct the
equilibrium for the second-price pure-chopstick game as an easy corollary.

Proof of Theorem 1. First some notation and easy preliminary observations. The
cumulative distribution function of the probability measure in question is den6ted
Obviously,G (1,1, 1) =1 andG(0, 0, 0) = 0. The four faces that compriseare congruent
equilateral triangles. Three of them (those that to@;#, 0)) possess the property that one

of the bids is the sum of the other two; we denote these fAde# 2, andF 3, respectively,
where the integer designates the coordinate of the bid that is the sum of the other two bids.
The fourth faceF't is the “top” of T'; its triples all have the property that the sum of the
three bids is two.

Figure 1 depicts the projections of th& onto the (x, y)-subspace. Note that the
hypotenuse of each of the (right-triangle) projections forms one of the main diagonals
of the square. The right angle of the projectionfof is located at(1, 0), that of the
projection of F2 is at (0, 1), that of the projection off'3 is at (0, 0), and that of the
projection of Fz is at(1, 1). Note also that the area of any polygonAi is proportional
to the area of its projection and that the constant of proportionality is the same &cross
This is because the four faces all happen to lie in planes that intersect the coordinate plane
{(x,y,0): (x,y) € R%} at the same angle.

We will show that against the distribution in question the expected profit of any bid
triple in T is the constant OFirst note that the expected profit of the bid trigle b, ¢)
against the distribution functio@ is
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1 X

Fig. 1. Projections ofi,i =1,2,3,¢.

n(a,b,¢c) = 2G(a,b,1)+2G(a,1,¢)+2G(1,b,c)—4G(a,b,c) —aG(a,1,1)
—-bG(1,b,1)—cG(1,1,0). Q)

The first three terms in the definition af are winning probabilities for specific bid pairs,
each multiplied by two, the value of winning two objects. The fourth term corrects for the
multiple countings in the first three terms of the probability that all three bids win. The last
three terms give the expected payments for winning bids.

Next, underG, although the three bids are not mutually independent, it turns out
that each pair of them is independently distributed and that the marginal distributions on
single bids are all uniform of0, 1]. To see this, note that for the pdit, b) € [0, 1)2 the
probability that bothy andb are winning bids is proportional to the sum of the areas of
the intersections of the bridl, a] x [0, ] x [0, 1] with the four faces of". But these are
in turn proportional to the sums of the areas of the intersectiof, ef x [0, ] with the
four triangles in Fig. 1. Now these four triangles may be paired into mutually exclusive
regions that covel0, 1]2 exactly, so that the probability of the bri¢®, a] x [0, b] x [0, 1]
is proportional to the areab of its projection onto the space of its first two coordinates
Hence it must be tha6 (a, b, 1) = ab on [0,1]2 and G(a, 1,1) = a on [0, 1]. So by
symmetry we have

n(a,b,c)=Zab+2bc+2ac—a2—b2—02—4G(a,b,c). (2)

The calculation ofG(a, b, ¢) requires a little more work; in particular its algebraic
expression differs according to whether, b, ¢) is an element off or not. As before,
we shall construcG (a, b, ¢) by summing the probabilities of the intersectiong@fa] x
[0, b] x [O, c] with the four faces of”. We begin by considering the case(af b, c) € T.

First note that if(a, b, ¢) € T, the intersection of0, a] x [0, b] x [0, c]with Ft is either
the empty set or a singleton, so its probability is zero. Péti (i = 1, 2, 3) denote the
projection of Fi onto the subspace of its two smaller coordinates. We want to calculate
the areas of theP Fi-projections of the intersections of the brick with each of the three
faces, respectively, because the projections are all proportional to the actual areas and the
constant of proportionality is again the same.

Now assume without loss of generality that b > c.
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Case 1, F3. In this caseg and b win wheneverc does(a > b > ¢ > x + y implies
min{a, b} > maxXx, y}); so we seek the area of the triangle whose projection is shaded
in Fig. 2, and which is easily seen to b&/2. (Of course, eithes or b may be matched
againstx.)

Case 2, F2. In this case: wins wheneveb does(a > b > x + y impliesa > max{(x, y});
and we seek the area of the trapezoid shaded in Fig. 3, and whioh is (b — ¢)?)/2.
(Eithera or ¢ can be matched against)

Case 3, F1. In this case, we seek the area of the pentagon shaded in Fig. 4, and which is
be— (¢ — (a —b))%/2. (Eitherb or ¢ can be matched agains) Itis important to notice that

for (a, b, ¢) to be an element df, b andc must be such that the rectan¢e 4] x [0, c] is

cut by the line{(y, z): y + z=a}.

Adding the three projected areas produces
a2+ b2 4 (2
> .

But each of the fou? Fi has total area /2, so the expression above must be halved to
produceG (a, b, ¢), and, plugging this into (2), we conclude thafa, b,¢c) =0 onT.

ab+ bc+ac —

y

Fig. 2. Case 1F3.

N

i

b a 1 X

Fig. 3. Case 2.
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b a 1 y

Fig. 4. Case 3F1.

OutsideT, weak dominance considerations allow us to restrict consideration to the unit
cube If (a, b, c) € [0, 1]3\7, there are two cases to consider:

Casea: a + b+ c <2 but one of the bids exceeds the sum of the other two; and
Caseb: a + b+ ¢ > 2 but none of the bids exceeds the sum of the other two.

For both cases, the polynomial expressions;fois the same as that given in (2); the only
difference is in the calculation @ (a, b, ¢).

Case a. Again the intersection dfo, a] x [0, b] x [0, c] with Ft has zero probability.
By the conventionthat > b > ¢, itis thea bid that exceeds the sum of the other two, and
this alters theG (a, b, ¢) calculation only in Case 3, where it is increased by the outward
shifting of the diagonal boundary of the pentagon. But this increased valGé«b, c)
only drives below zero and so such bid triples are not profitable.

Case b. Now the intersection df0, ] x [0, b] x [0, ¢] with Ft has positive probability,
but the other three intersections are the same as in Cases 1, 2, ar@(3, 80c¢) is again
increased and is again negative. O

The construction for the second-price pure chopstick case is very similar7 L@ 2ote
the convex hull of the four point&, 2, 0), (2, 0, 2), (0, 2, 2), and(0, 0, 0).

Corollary 2. The uniform probability measure on the surface of 27 generatesa symmetric
equilibrium of the pure chopstick second-price auction game.

Proof. Let G’ be the cdf of this uniform measure. The expected profit of the pure triple
(a,b,c) € 2T is now

7'(a,b,c) = 2G'(a,b,1)+ 2G'(a,1,¢c) +2G'(1,b,¢c) — 4G'(a, b, )
a / b / c /
- = 1,1 — - 1.6,1) — = 1,1
2G(a, 1) ZG(,b, ) 2G(, ,C), (3)

since the expected payment of a winning bid against a uniformly distributed losing
bid is half the winning bid. ButG’(a,b,c) = G(a/2,b/2,¢/2) and son’'(a,b,c) =
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n(a/2,b/2,¢/2) = 0. The argument that there are no profitable triples0r2]3\27 is
similar to the analogous part of the proof of Theorem &

We will continue to exploit the close relationships between the equilibria of first- and
second-price auctions in subsequent sections. In addition, the relationships between both of
these and auctions with artificial payment rules will be the key to all the “impure” chopstick
auction development.

3. ThecaseO<a <1

Leta“paymentrule’p: R+ — Ry be anondecreasing, continuous function (of a single
bid) with the property that lim_, o, p(x) = 00, and define the generalized inverse function
p~1(x) = sux”: p(x’) = x}. Consider artificial variants of the first-price chopstick
auctions which differ only in that the winning bidder pays) instead ofc when a bid ofc
wins any of the objects. Denote By(«, p) the game defined by marginal third valuend
payment rulep. Of course, ifl is the identity function, thed™ («, I) is the original first-
price chopstick auction defined by the parameteTie-break rules are left unspecified for
now; we are not necessarily assuming the same tie-break rule intgatlp) and " («, ).
More notationp(x, y, z) = (p(x), p(y), p(z)). Similarly for p~1.

Proposition 3. If G, is a cumulative distribution function having atomless marginal
distributions that generates a symmetric equilibriumfor I"(«, p) with sometie-break rule,
thenG; =G, o p~1 generates a symmetric equilibrium for I' (e, I) with some tie-break
rule.

Since ties occur with probability zero agair@};, the expected profit of the bid triple
(x,y,z)againstG, in I'(«, p) is
Tp(x,y,2) = 2Gp(x,y,00) +2G p(x,00,2) + 2G p (00, y, 2)
—(4=a)Gp(x,y,2) — p(x)Gp(x, 00,00) = p(y)G p(00, y, 00)
— p(2)G (00, 00,2).
When p is strictly monotone, the expected profit of the bid triple, y, z) againstG; in
I (a, ) is evidently
rr[(p(x, v, z)) = 2Gp(x,y,00) 4+ 2G p(x,00,2) + 2G (00, ¥, 2)
—(4=a)Gp(x,y,2) — p(x)Gp(x, 00,00) = p(y)G p(00, y, 00)
— p(2)Gp(00,00,2),

S0 any image undegp of a maximizer ofr, is a maximizer ofr; and the argument is
complete. The complications come with flats jin and this is where the tie-break rule

for I'(«, I) becomes relevant. For a complete proof, which identifies the class of usable
tie-break rules, see Appendix A.
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For eachw € (0, 1) our goal is to come up with a choice of payment rpléor which
we can compute a symmetric equilibriumBf«, p). Toward this end, leB = «/(2 — «)
and define a tetrahedron analogously'tin Section 2 by

y+z x+z x+y}
A , IS — .
1+8 1+8 1+8

(Alternatively, T is the convex hull of the four pointél, 1, 8), (1, 8,1), (8,1,1), and
(0,0, 0). Intuitively, the closer ig to one the higher isg and the slimmer i§.) Each of
the four faces of the surfac® of Tp is identified asF'i, i =1, 2, 3, ¢, using the code that
is the obvious analogue to that in Section 2, and fgrr the projections onto the space of
the two smaller coordinates are again identified, respectively, /s Now let 115 be the
unique probability measure ofy:

Tﬁz{(x,y,z): X+y+z<2+8, x<

(i) which is uniform on all four faces separately;
(i) which assigns equal total measure to the fakés F2, and F3; and
(iii) whose restriction toF3 U Fr projected onto theP F3-plane is uniforn. (This
projection is depicted in Fig. 5.)

Proposition 4. For « € (0,1), the probability measure ug generates a symmetric
equilibriumfor I' (a, pg) for all tie-break rules, where

_ R _R2
lZﬁ—lﬂﬁz If0<x<,3,
F-Ptz—%
= 200_p8_ 82
pp(x) x°2-p ,3)  ifp<x<l
2@+ B —x2(p+ ) -
X ifl1<x.

Notice first that this payment rule satisfies the assumptions of Proposition 3 and second
that it is constant oii0, ). Sinceg has no atoms, ties occur with probability zero at

B 1 X

Fig. 5. Projection ofF3U Ft.

7 Condition (jii) corrects for the fact that whens% 0, Fr no longer possesses the same symmetric relationship
to the otherFi as whenx = 0.
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Yy y
1
" %
a
b
a 1 X a+b X
Hy (a,b) Z,(a,b)
y
a
a X

Zu(a)=Z,(0,a)

Fig. 6.

the equilibrium ofI" («, pg). But since the marginals gfg assign positive probability to
[0, B), there will be ties with positive probability at the induced equilibriumit, 7).
Before proving Proposition 4, we need some additional notatiop.iff any measure
on Sg, let Pu denote the projection onto thR F3-plane of its restriction t&"3 U Ft.
Now for (a, b) € R2, let H,(a,b) be thePp-measure of[0, a] x [0, b]); let Z,.(a, D)
be the Pu-measure of the triangle generated by the poipts, a), (B(a + b),a + b),
and (Ba + (14 B)b,a); and letZ,(a) = Z,(0,a) be the Pu-measure of the triangle
generated by the point®, 0), (a, Ba), and(Ba, a). (See Fig. 6, the panels of which depict
the polygons whose measures are specified afjove.
The heart of the proof consists of a series of lemmas. Lemma 5 states that the sum of
the first four terms of the profit function relative &my symmetric probability measune
on Sg can be expressed as the sum of terms that are each functions only of pairs of the
three bids.

Lemma 5. If J, is the distribution function associated with any symmetric probability
measure . supported on Sg and

Q(a,b)=2H,(a,b) + %(zﬂ(a) +Z,(0) + 2= ) Zyu(b,a—b),

then for any (a, b, ¢) € T

8 The depictions in Fig. 6 assume>la > b anda > B(a + b).
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Q(a,b)+ Q(a,c)+ Q(b,c)

=2Ju(a,b,00)+2J,(a,00,¢)+2J,(00,b,¢) — (4—a)Ju(a,b,c).
Proof. See Appendix A. O

Lemma 6 states that in the special case of the distribution fundiipn generated
by g, the same profit terms can be separated into functions of the individual varfables
Lemma®é. If V(a) =2H,,(a,a) + «Z,,(a) and (a, b, c) € Tp, then

V(a)+ V() + V(c) = 2G,(a,b,00) 4 2G 4(a, 00, ¢) + 2G5 (00, b, )
—(4- a)GMﬁ (a,b,c).
Proof. See Appendix A. O
The final lemma lists the functional forms needed in the proof of the proposition.

201 _ p2
Lemma?.Z,,(x) = *(1-59

u _xz(l—ﬁ)
20—p-py DT
xz(l—ﬂ+l—ﬁ_2)
B 2_ 2 i
P ifo<x <p,
Gpup(x,00,00) = x(2-|-,3)—xz(:3"'/3_22)_’3_ﬁz2 ifp<x<1
z_ﬁ_ﬁz I X 5

1 if1<x.
Proof. The proof of Lemma 7 follows directly from the definitionso

Finally we come to

Proof of Proposition 4. First, if (x, y, z) € Tg, then from Lemma 6
Tps (X, ¥,2) = V() + V(y)+ V(2) — pp(x) Gy (x, 00, 00)
- p(y)GM./s (007 Y, OO) - p(Z)GMﬂ (007 o0, Z)'
Butfor 0<x <1, V(x) = pp(x)Gy(x, 00, 00) = x2 and sor,, is identically zero on
the tetrahedron.

For(x,y,z) €0, 1]3\T,3, there are, as in Section 2, two cases.

Casea: x+y+z <2+ 8, butone of the bids exceeds the sum of the other two multiplied
by (1+ )1 and

9 We have decomposed the separability argument into two steps (Lemmas 5 and 6) to highlight that the initial
step goes through in more general settings. This observation may prove useful beyond the present setting.
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Caseb: x+y+z> 2+ B butnone of the bids exceeds the sum of the other two multiplied
by (1+ )7L

Case a. Assume that it is the condition < (y + z)/(1 + B) that is violated. There
are two possibilities: First if or z is smaller tharg andx > g1y, then H, (x, y) must
be replaced in Lemma 5 bHM(,B_ly, v), which is strictly smaller and results in smaller
values forr, (x, y, z). Otherwise, the calculation of, (x, y, z) in the proof of Lemma 5
must be increased as in Casef Theorem 1 for the pure chopstick case. As there, the
result is a decrease in profits.

Caseb. Assume now that the conditiori- y 4z < 24 g is violated. In this case the bid
triple sometimes wins all three objects agaifist As in Casé> of the proof of Theorem 1,
this reduces profits. O

Propositions 3 and 4 immediately lead to

Theorem 8. For 0 < o < 1, if pg isdefined asin Proposition 4, then G, o pz* generates
a symmetric equilibrium of thefirst-price auction I («, 1) for some class of tie-break rules.

Once again, the second-price auction construction can be found by modifying the first-
price construction.

Theorem 9. Let gg(x) = 3V (x)/dG, (x, 00, 00). Then Gy, qgl generates a symmetric
equilibrium of the second-price auction for some class of tie-break rules.

Proof. First observe that

_p_ p2
12 '61'3/32 if0<x <8,
45 () = 3—,34-?_72
2x2=p=F) ifB<x<1;

2+8-2x(p+5)

S0 gg, like pg, is continuous, constant of), 8), and increasing orng, 1]. Hence we

can define the tie-break rule in the second-price auction between the bid vggi®ys
andqg(y) to be the same as betwepp(x) andpg(y) in the first-price auction. Next,

in Proposition 4 we have shown that the probability meagyyegenerates a symmetric
equilibrium in I' (o, pg). Here the players are again randomizing according to the same
distribution, but instead of biddingx, y,z), or pg(x,y,z) as in I'(«, I), they bid
gg(x,y,2). If they do so, the revenue parts of their payoffs are clearly the same as in
I'(«, pg), so we only have to show that the cost parts are also the sani&edrpg) the
expected cost of the bid was

Pp(x)G iy (x, 00,00) =V (x).
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The expected cost of bidding; (x) in the second-price auction agaipsj o qlgl is clearly

X

X
fq;s(y)dGu,s(y,oo, 00)=/
0 0
But this is justV (x) — V(0) = V (x) by the Fundamental Theorem of Calculus.
That no deviations are profitable is similar to the argument in the proof of Proposi-
tion3. O

AV (y)

————————AdG4(y, 00, 00).
3Gy, (y,00,00) 17

4, Thecasea <0

Sincex < 0, there is a preliminary issue of whether negative bids should be allowed. As
it turns out, even when they are allowed they are not used in the equilibrium we construct;
so it does not matter, but for formality’s sake, we allow them. Next notice that the sign of
«a was immaterial to the proof of Proposition 3, which will play the same role here as in
Section 3.

Now, for eacha € (—o0, 0) defineg, Tg, andug exactly as in Section 3. We retain
the same notation for the faces and projections of faces of the tetrahedron. Ngteghat
always between-1 and Q so three of the extreme points B are now outsideR?r. The
projection onto theP F3-plane of the restriction ofig to F3U Ft is depicted in Fig. 7.
Intuitively, the closer igr to —oo: the closer i$8 to —1 and the thicker ig.

Proposition 10. For « € (—o0, 0), the probability measure ug generates a symmetric
equilibriumfor I («, pg) for all tie-break rules, where

0 if —oo<x <0,
x22—-p—p2 .

x2+p) —x2B+5)-B-5

X ifl1<x.

Notice first that this payment rule satisfies the assumptions of Proposition 3 and second
that it is constant ofi-oo, 0). Notice also its similarity to the payment rugg in Section 3.

Yy (1,1)

R

Fig. 7. Projection ofF3U F't.
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The proof of Proposition 10 follows that of Proposition 4 with a couple of exceptions.
Now, for (a, b) € RJZF, H,(a,b) is the Pu-measure of[B, a] x [B,b]), Z,(a,b) is the
Pu-measure of the triangle generated by the poi#s, a), (8(a + b),a + b), and
(Ba+ (14 B)b,a), andZ,(a) is the Pu-measure of the triangle generated by the points
(0,0, (a, Ba) and(Ba, a). (See Fig. 8, which includes depictions for some cases in which
one of the arguments is negative.)

The statements and proofs of Lemmas 11 and 12 are now identical to those of Lemmas 5
and 6, respectively. (We provide copy of the statements, but not the proofs, below for

Y y
b
a a
S X b % X
Hy(a,b) (a>b>0) Hy (a,b) (a>0>b)
Yy Y
a+b a+b
a WL llon
X a 2 X
Z,u(a,b) (a>0) Z,(a,b) (a<0)
Yy

— Yz /////////////,,'.

Zu (a) (a>0)

Fig. 8.
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convenience. But the reader should be careful to note that the geometry behind the algebra
has different forms when one of the bids is negative.)

Lemma 11. If J, is the distribution function associated with any symmetric probability
measure u supported on 7 and

Q(a,b)=2H,(a,b) + %(zﬂ(a) +ZuD)+ 2—a)Zu(b,a—Db),
then for any (a,b,¢) € T

Q(a,b)+ Q(a,c)+ 0, c) = 2J,(a,b,00)+2J,(a, oo, c)
+2J,(00,b,¢) —(4—a)Ju(a,b,c).

Lemmal12.1f V(a) =2H,,(a,a) + aZ,,(a) then

V(a)+V(b)+V(c) = 2Gyy(a, b, 00) +2G4(a, 00, c)
+2G,(00,b,¢) = (4—a)Gyy(a, b, c).

Lemma 13 parallels Lemma 7. The only difference is in the algebraic for@ygf

x?(1-p?) x?(1-p)
Lemma 13. Zﬂﬂ(x)—m, Huﬁ(x,x)—m,
irrelevant if —oco<x <0,
_y2 B2\ _g_ B
Gy (x,00,00) = X@+p) - x*ftF) P ifo<x <1,
2—p—p?
1 if1<x.

As with Lemma 7, the proof of Lemma 13 follows directly from the definitions. (The
reason it is not necessary to kn@y,, (x, oo, o) whenx < 0 is thatpg(x) = 0 there.)

Proof of Proposition 10. First, if (x, y, z) € Tg, then from Lemma 12

75 (x,¥,2) = V(x) + V() + V(2) — pp(x)Gp(x, 00, 00)
—P(»)Gp(00, y,00) — pp(2)Gp(00, 00, 2).

ButforO0<x <1, V(x) = pg(x)Gg(x, 00, 00) =x%and sarp, is identically zero on the
tetrahedron.

For(x,y,z) €0, 1]3\T,3 there are, as in Sections 2 and 3, two cases. The arguments in
both are identical to those in the proof of Proposition 4.

Casea: x+y+z <2+ B, butone of the bids exceeds the sum of the other two multiplied
by (1+ B8)~%; and

Caseb: x+y+z> 2+ B but none of the bids exceeds the sum of the other two multiplied
by (1+ )~ L.
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Case a. Assume that it is the condition< (y + z)/(1+ B) that is violated. There are
two possibilities: First ify or z is smaller tharg andx > g1y, then H,(x, y) must be
replaced in Lemma 11 bﬁﬂ(ﬂfly, y), which is strictly smaller and results in smaller
values forr, (x, y, z). Otherwise, the calculation of, (x, y, z) in the proof of Lemma 11
must be increased as in Casef Theorem 1 for the pure chopstick case. As there, the
result is a decrease in profits.

Caseb. Assume now that the conditiort- y 4z < 24 g is violated. In this case the bid
triple sometimes wins all three objects agaifist As in Caseb of the proof of Theorem 1,
this reduces profits. O

Propositions 3 and 10 immediately lead to

Theorem 14. For —oo < @ < 0, if pp is defined as in Proposition 10, then Gg o pg~t
generates a symmetric equilibrium of the first-price auction for some class of tie-break
rules.

Again the second-price auction construction can be found by modifying the first-price
construction. The proof parallels the proof of Theorem 9 and is omitted.

Theorem 15. If g(x) = 3V (x)/3G ., (x, 00, 00) then G, oG ~1 generates a symmetric
equilibrium of the second price auction for some class of tie-break rules.

5. Discussion

We have constructed symmetric equilibria for a class of complete-information,
simultaneous sealed-bid auction games with two bidders, three identical objects, and
marginal valuations that increase at first and then decrease. The method is to find
tetrahedron-based symmetric equilibria for a related class of artificial auctions and then
to transform the mixtures in a particular way. The method works both when the game of
interest is a first- or second-price auction.

There are two main novelties in this. One is the establishment of a useful relationship
between different auctions through the “payment rule.” By choosing just the right payment
rules, simple equilibria can be found and transformed. This turns out to be a useful
discovery for a much wider class of auction models, including incomplete-information
auctions. Although in some ways reminiscent of the “revenue equivalence theorem,” it
establishes a relationship that is deeper and more directly based on strategic considerations.
See (Szentes, 2001) for more about this method.

The second novelty is the use of mixtures whose supports are surfaces of tetrahedra
and whose best-response sets are the tetrahedra themselves. The discovery of this was
quite fortuitous; that the set of best responses is of higher dimension than the support of
the mixture makes finding the mixture through numerical means unlikely if algorithms
are based on better- or best-response dynamics. (If such an algorithm started near the
equilibrium, it would tend to increase probability on the best response set and therefore
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move away from the equilibrium.) Indeed, it was by no means clear to us ex ante what the
dimension of the support of the equilibrium mixture would turn out to be.

Itis tempting to think in more general terms of symmetric equilibria having convex best-
response sets whose boundaries are the supports of the mixtures. But even though the idea
of the support surrounding the set of best responses does seem to work, convexity of the
best-response set does not in general. To see that the transformed tetrahedra in Sections 3
and 4 are not generally convex sets, take the exampe-00.2 (i.e.,a = 1/3). Two of the
extreme points ofp 2 are(0.2, 1, 1) and(1, 0.2, 1); and so(0.6, 0.6, 1) is the midpoint of
the extremal edge between them. Now from Propositiopo4(1) = 1, pp2(0.2) = 1/3,
and pp.2(0.6) ~ 0.62. So(po.2(0.2,1, 1) + po.2(1,0.2,1)) /2= (2/3, 2/3, 1) cannot be the
Po.2-image of any point irfp 2.

We are also interested in extending our constructions beyond the 2-bidder, 3-object
setting of this paper. Generalizing the pure chopstick example to the casg:of3)
objects with bidders desiring exacity(> n/2) of them, a simple symmetric equilibrium
with a one-dimensional support exists when the number of bidders is sufficiently large; see
(Szentes and Rosenthal, 2001). It is also possible to find symmetric equilibria for multi-
object cases with two bidders when the marginal valuations are monotone increasing. The
equilibria that we can construct in these cases take on simple forms; again the theme of the
support surrounding the set of best responses recurs. All of this is the subject of ongoing
research.

Of course, whether knowing any of this equilibrium structure is of use to bidders in real
auctions is somewhat dubious. When the set of best responses to the equilibrium mixture
is so large, what discipline should a bidder put on his bidding strategy? On the other hand,
it ought to be that knowing what equilibrium structures look like in theory should inform
the bidder at least on where to focus his thoughts.

Finally, we should point out a related class of games that is also of historical interest.
“Colonel Blotto” games are two-person zero-sum games of force (or budget) allocation. In
the case that seems closest to our pure chopstick game, the two players each have a unit
of force to be allocated among three battles. The winner of each battle is the player who
assigns more force to it than the opponent does, and the winner of the game is the one who
wins two of the three battles. As far as we know, the first symmetric equilibria of this game
were constructed by Borel (see (Borel and Ville, 1938); also (Laslier and Picard, 2000)).
These both involve two-dimensional supports; and one of them involves first putting a
uniform measure on the hemisphere which sits above the disc that is inscribed in the unit
simplex of R3, and then projecting that measure onto that inscribed disc. This generates
a measure that is no longer uniform but that has uniform marginals. So there are aspects
of our pure chopstick construction that are reminiscent of Borel's disc solution, but the
support of the mixture surrounding the set of best responses apparently has no counterpart
there.
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Appendix A

Proof of Proposition 3. We first introduce the following additional notatior:= (x1, x2, x3) € R3 AX) =
{X: p(x) =p(x)}; and for any cumulative distribution functia®, p..¢ is the associated probability measure.

Let N(x,y) be the expected revenue (profits plus paymentg)(d, p) if the bid-triple of the player ix and
the bid-triple of the opponent . Let M; (X, y) be the probability that bid-tripl& wins theith object against
bid-tripley in I' («, p). (So if x; # y;, thenM;(x,y) is one ifx; is bigger thany; and zero otherwise.) Then the
expected payoff of a player biddingagainst the opponent biddingn " («, p) is

3

W, (%, y) = NOGY) = D Mi(X V) p(xi).-
1=1

Let the expected payoff to a player bidding the trigle I" (¢, p) againstug, be

Up(x) = / Wp(X, Y) dNG,, .
R3

The key to the proof is simply noticing that iff(«, p) randomizing on suppg, according toug, is
equivalent to randomizing first on the image ungeof suppug, according toug, and then for eacha in
suppug, randomizing onfx: p(x) = a} according to the restriction gf¢, to this set, that is according to the
conditional probability measure
_ HG,
T e, (ki po=ap’
(The measure., is not yet defined when the denominator above is zero.)

There are two possibilities:

MHa

(i) ua can be any measure on the intersection if
suppuc, N {x: px) =a} # %;
(i) pa can be any measure ¢r: p(x) = a} if

suppuc, N {x: px)=a} =0.)
Therefore ghg, = duadug,, and we rewrite

0= [ [ Wy duat)duc @.
R3{y: p(y)=a}
If G, generates a symmetric equilibrium fo¥(«, p), then this expression must be constant on gupp and
weakly smaller outside this support.

Now we are ready to define the needed class of tie-break rulEsdn/). The idea is: For bid-triples whose
inverse images under are not single-valued, the tie-break probabilitiesI v, /) are inherited according to
the equilibrium probabilities i («, p). Formally, if theith coordinates op(x) andp(y) are the same, then the
probability thatx; wins is

M;(p(x), p(y)) = / / M; (X', y") dupeo diepey)-
Y €A(y) X €A(X)
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(For ties outside the range pf no tie-break rule need be specified.) Expected revenue is therefore

N(px), py) = / / N(X,y') dupe dupgy)-

YEA(y) XeAX)

So the expected payoff to a bidder bidding) againstp(y) in I'(«, I) is:

Wi (p(), p(y)) = / ./(wa ZMuym )wmmmw

Y eA(y) X €AX)

and the expected payoff from biddipgx) is:

MWW=/M@®$MNMF
R3

Applying Fubini's Theorem we get:

1(pM) / / / (N(x y)—ZM(x Yp(x )dupm duc, dup-

X'€A(X) R3 y'€A(y)

Observe that the outermost integrand is jligtx), soU; (p(x)) can be rewritten as

U (p0) = / U, () ditposy- (A1)

X' €A(X)

But U, is constant on the support pf;,,, and therefore so i&/; on the image undey of that support, which
is the support of.g, . Itis also clear that ib(x') € rangep)\ suppig,, Ur(p(X)) can be no larger than the same
constant, since otherwisé would have been a profitable deviation/fia, p).

There remains the possibility of a deviation to a trigfe, z2, z3) that includes a bid, say, outside (i.e.,
below) the range op. Since such a bid wins with probability zero, it only remains to show that its companions
do not earn positive profits. To have a chance, both of these bids must be in the ran@eibéising the tie-break
probabilities that are in effect f@, p~1(z2), p~1(z3)) in I'(«, p), we see that the deviation cannot be profitable
inl(a,I). O

Proof of Lemma 5. Assume(a, b, c) € Tg and, without loss of generality, that> b > ¢. For simplicity, we
suppress the.-subscript.

Calculation ofJ (a, b, 00): By definition, both bids in the paiaz, b)) win againstF3U Ft with probability
H(a, b). They win against2 with probability Z(b) and against'1 with probability Z(a) — Z(b,a — b). The
analogous expressions féka, co, ¢) andJ (oo, b, ¢) are derived similarly.

Calculation of J(a, b, c): First, since(a, b, c) € Tg, all three bids win all three objects against with
probability zero. They win againgt3 with probability Z(c), againstF2 with probability Z(b) — Z(c,b — ¢),
and agains#'1 with probability Z(a) — Z(b,a — b) — Z(c,a — ¢).

Direct substitution now establishes the resulta

Proof of Lemma 6. Again we suppress the subscripts for simplicity. WMét= H (a, a) + H (b, b) — 2H (a, b).
ThenQ(a, b) can be rewritten as

H(a,a)+ H(b,b) + [Z(a)+Z(b)]+(2 a)Z(b,a—b) —

Now M is the P-measure of the square generated by the pdints) and (b, b) and so is just a constant times
(a — b)2. Z(b,a — b) is the measure of the union of two right triangles, both having height b); one having
length(a — b), and the other having lengf(a — b). S0 Z(b, a — b) is the same constant timéb+ 8)(a — b)2/2.
Since(1+ B) =2/(2— ), we have

Q(a.b) = H(a.q) + H(b.b) + 5 [Z(@) + Z(b)].
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Therefore

Q(a,b)+ Q(a,c) + Q(b,c)=V(a)+ V(b)+V(c), whereV(a)=2H(a,a)+aZ(a). O
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