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Abstract

Symmetric equilibria are constructed for a class of symmetric auction games. The gam
have two identical bidders bidding in three simultaneous first-price sealed-bid auctions for id
objects. Information is complete and the bidders’ marginal valuations increase for the second
and then decrease for the third. In all cases the support of the mixture that generates the equ
is two-dimensional, and it surrounds a three-dimensional set of best responses. This appear
previously unknown structure.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Offshore oil leases and spectrum licenses are examples of objects sold by t
government through simultaneous auctions of one kind or another. Other examp
simultaneous auctions are abundant around the world. Situations for which a simulta
design is often recommended are when a bidder’s valuation for one object is typ
dependent on what other objects the bidder may win. A simultaneous auction a
bidders to express their preferences over sets of objects through their bids, altho
does not necessarily result in an assignment that is either efficient or revenue maxi
for the seller.
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Though details of simultaneous design rules differ, they all tend to confront bid
with an “exposure problem”: For example, a bidder whose valuation for a set of ob
exceeds the sum of his valuations for the separate items that make up the set
tempted to bid above the separate stand-alone valuations of the individual items in
of winning the set, risking having overbid on pieces in the event that the grand p
unsuccessful. Various measures have been used to soften exposure problems: in s
auctions the simultaneous designs typically involve ascending prices, which allow b
time to assess gradually the likelihood of successfully acquiring various combinatio
spectrum blocks; and provisions for bid withdrawals are often included. These measu
not completely eliminate the problem, however, and the US FCC has recently anno
that it will begin to allow all-or-none bids on subsets of licenses to try to solve the pro
directly.2

Despite all the attempts to get around them, surprisingly little is known abou
structure of equilibria in games generated by simultaneous auctions that present ex
problems.3 This paper contributes to what is known in a small way: We construct equil
for a small class of such auction games. These auctions all involve only three ide
objects, two identical bidders, and complete information. But the class of auctio
a particularly important one nonetheless, because the bidders’ marginal valuatio
assumed to be first increasing and then decreasing in the number of objects ac
For spectrum license auctions, this is a particularly relevant specification: in some
auctions (e.g., Netherlands 1998, Australia 2000) the spectrum blocks for sale we
design) individually too small to be useful by themselves and the total available was
more than a single bidder could use efficiently (or was allowed to win).

As will be seen, not only was equilibrium structure of the games we analyze
previously unknown, but the structures turn out to be of a completely new form; we kn
nothing similar in the literature. Furthermore we exhibit a new technique for equilib
construction which makes use of a connection between familiar auction models th
difficult to analyze and unfamiliar ones that are easier. We believe that this techniqu
have a broader range of applicability than its use here.

The games in this paper are simultaneous “chopstick” auctions: three ide
chopsticks are sold simultaneously, either in separate first-price sealed-bid auct
in separate second-price sealed-bid auctions. There are two bidders, and it is c
knowledge between them that a pair of chopsticks is worth $2 but that a single cho
is worth nothing by itself. A third chopstick is worth an additional $α, bringing the total
value of a three-object set to $(2 + α).4 (As usual, we assume it is common knowled
between the bidders that both of them have risk-neutral preferences over money lot
We call the cases whereα = 0 the “pure chopstick” cases;5 the equilibria we find for

2 See (Milgrom, 2000) for a discussion of some of the issues that the FCC is confronting.
3 See, however, (Krishna and Rosenthal, 1996; Rosenthal and Wang, 1996).
4 The parameterα can be negative. This need not be taken literally; it represents the case where the m

value of the third object is less than that of the first, which has been normalized at $0 for convenience
marginal value of the first object is not zero, the equilibrium structure is modified in a simple way.)

5 Credit goes to Mary Lucking-Reiley for the evocative chopstick name for identical objects that are u
except in pairs.
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the pure-chopstick first- and second-price auctions are symmetric both across peo
across chopsticks, have particularly simple and beautiful forms, and are valid for a
break rules. Whenα �= 0, the validity of the constructions depends on specific tie-br
rules that are tied to the specificα values. We suspect that no equilibria exist when
tie-break rules are other than the ones that we need to specify, and we suspect th
are no equilibria other than the ones we have found even under the “right” rules.6

While the sealed-bid nature of our auction games makes them atypical of real spe
auctions, there are often backup rules in real spectrum auctions that give the auction
right to call for a final sealed-bid round in certain circumstances (and therefore for w
plans must be made by bidders). Simplicity is, however, the main reason for stu
sealed-bid auctions before attempting to understand ascending ones. Another un
feature of the chopstick examples is the assumption that the bidders’ valuation sch
are the same and that this is common knowledge. Again, we opt for simplicity as a re
strategy.

Pure strategies in our games are triples of real numbers (bids) and mixed str
are therefore probability distributions overR3. In the pure chopstick cases(α = 0), the
supports of the mixtures that generate the symmetric equilibria in both the first
second-price cases, turn out to be the surfaces of regular tetrahedra, and the distr
themselves turn out to be uniform on these surfaces. In addition, in each case all the
inside the tetrahedron are pure best responses to the equilibrium mixture. The comb
of the support being the surface of a polyhedron and the set of best responses be
entire polyhedron is completely unfamiliar to us.

Whenα > 1 and the tie-break rule in case of a tie for all three objects simultaneou
bids of(2+ α)/3 awards all objects to the same bidder, in both the first- and second
case there is obviously a pure-strategy symmetric equilibrium in which both bidde
(2+ α)/3 on each object.

When−∞ < α < 1 but α �= 0, the constructions become more complicated bec
the tie-break rule and the equilibrium mixture need to be constructed jointly and
occur in equilibrium with probability strictly between zero and one. To accomplish
task we introduce a new, indirect construction method. First we establish a functiona
relationship between the symmetric equilibria together with tie-break rules of our cho
auctions on the one hand and the symmetric equilibria of another class of simulta
sealed-bid auction games for which the tie-break rules turn out not to be critical o
other hand. Then we construct equilibria for these other games. For these gam
equilibrium mixtures are again supported on the surfaces of symmetric tetrahed
the tetrahedra are no longer regular ones, and the distributions, though symmetric,
longer uniform, although they are uniform when restricted to single faces of the tetra
The tetrahedra and distributions then become deformed when mapped back into eq

6 There are two approaches to existence theorems for games like ours. One approach (Dasgupta an
1986; Reny, 1999, for example) provides sufficient conditions for existence that depend on the specific
tie-break rules and that are sometimes difficult to check in practice. The other approach is that of (Sim
Zame, 1990), where existence is proved for at least one (unspecified) tie-break rule. Jackson, et al. (2001
the Simon–Zame approach to incomplete-information models in which players can provide information
bids that is used to break ties.
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for the original games of interest. The entire equilibrium structure changes continu
with α, approaching the pure-chopstick equilibria in both cases asα approaches zero.

We begin in Section 2 with the construction of the equilibria for both first- and sec
price auctions in the pure chopstick case. Section 3 is devoted to the indirect const
for both cases when 0< α < 1. Section 4 treats both cases whenα < 0. Section 5
concludes with a discussion of equilibria of related games. Some proofs are relegate
Appendix A.

2. The pure chopstick case

A pure strategy in any of the chopstick-auction games is a triple of real numbers w
ith coordinate is interpreted as a bid for theith object. A mixed strategy is therefore
probability measure overR3. Let the tetrahedronT be defined as the convex hull of th
four points:(1,1,0), (1,0,1), (0,1,1), and(0,0,0). Alternatively,

T = {
(x, y, z): x + y + z� 2, x � y + z, y � x + z, z� x + y}.

Theorem 1. The uniform probability measure on the surface S of T generates a symmetric
equilibrium of the pure chopstick first-price auction game (i.e., when α = 0).

Most of the rest of this section is devoted to a proof of this theorem—showing that
point in S is a best response to the uniform probability measure onS. In fact, we show
also that each point inT is a best response. At the end of the section we construc
equilibrium for the second-price pure-chopstick game as an easy corollary.

Proof of Theorem 1. First some notation and easy preliminary observations.
cumulative distribution function of the probability measure in question is denoteG.
Obviously,G(1,1,1)= 1 andG(0,0,0)= 0. The four faces that compriseS are congruen
equilateral triangles. Three of them (those that touch(0,0,0)) possess the property that o
of the bids is the sum of the other two; we denote these facesF1,F2, andF3, respectively
where the integer designates the coordinate of the bid that is the sum of the other tw
The fourth faceF t is the “top” of T ; its triples all have the property that the sum of t
three bids is two.

Figure 1 depicts the projections of theFi onto the(x, y)-subspace. Note that th
hypotenuse of each of the (right-triangle) projections forms one of the main diag
of the square. The right angle of the projection ofF1 is located at(1,0), that of the
projection ofF2 is at (0,1), that of the projection ofF3 is at (0,0), and that of the
projection ofF t is at (1,1). Note also that the area of any polygon inFi is proportional
to the area of its projection and that the constant of proportionality is the same aci.
This is because the four faces all happen to lie in planes that intersect the coordinat
{(x, y,0): (x, y) ∈R2} at the same angle.

We will show that against the distribution in question the expected profit of any
triple in T is the constant 0. First note that the expected profit of the bid triple(a, b, c)
against the distribution functionG is
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Fig. 1. Projections ofFi, i = 1,2,3, t .

π(a, b, c) ≡ 2G(a,b,1)+ 2G(a,1, c)+ 2G(1, b, c)− 4G(a,b, c)− aG(a,1,1)
− bG(1, b,1)− cG(1,1, c). (1)

The first three terms in the definition ofπ are winning probabilities for specific bid pair
each multiplied by two, the value of winning two objects. The fourth term corrects fo
multiple countings in the first three terms of the probability that all three bids win. The
three terms give the expected payments for winning bids.

Next, underG, although the three bids are not mutually independent, it turns
that each pair of them is independently distributed and that the marginal distributio
single bids are all uniform on[0,1]. To see this, note that for the pair(a, b) ∈ [0,1]2 the
probability that botha andb are winning bids is proportional to the sum of the area
the intersections of the brick[0, a] × [0, b] × [0,1] with the four faces ofT . But these are
in turn proportional to the sums of the areas of the intersections of[0, a] × [0, b] with the
four triangles in Fig. 1. Now these four triangles may be paired into mutually exclu
regions that cover[0,1]2 exactly, so that the probability of the brick[0, a]× [0, b]× [0,1]
is proportional to the areaab of its projection onto the space of its first two coordinat.
Hence it must be thatG(a,b,1) = ab on [0,1]2 andG(a,1,1) = a on [0,1]. So by
symmetry we have

π(a, b, c)= 2ab+ 2bc+ 2ac− a2 − b2 − c2 − 4G(a,b, c). (2)

The calculation ofG(a,b, c) requires a little more work; in particular its algebra
expression differs according to whether(a, b, c) is an element ofT or not. As before
we shall constructG(a,b, c) by summing the probabilities of the intersections of[0, a] ×
[0, b] × [0, c] with the four faces ofT .We begin by considering the case of(a, b, c) ∈ T .

First note that if(a, b, c) ∈ T , the intersection of[0, a]× [0, b]× [0, c] with F t is either
the empty set or a singleton, so its probability is zero. LetPFi (i = 1,2,3) denote the
projection ofFi onto the subspace of its two smaller coordinates. We want to calc
the areas of thePFi-projections of the intersections of the brick with each of the th
faces, respectively, because the projections are all proportional to the actual areas
constant of proportionality is again the same.

Now assume without loss of generality thata � b � c.
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Case 1, F3. In this case,a and b win wheneverc does(a � b � c � x + y implies
min{a, b} � max{x, y}); so we seek the area of the triangle whose projection is sh
in Fig. 2, and which is easily seen to bec2/2. (Of course, eithera or b may be matched
againstx.)

Case 2, F2. In this casea wins wheneverb does(a � b � x + y impliesa � max{x, y});
and we seek the area of the trapezoid shaded in Fig. 3, and which is(b2 − (b − c)2)/2.
(Eithera or c can be matched againstx.)

Case 3, F1. In this case, we seek the area of the pentagon shaded in Fig. 4, and w
bc−(c−(a−b))2/2. (Eitherb or c can be matched againsty.) It is important to notice tha
for (a, b, c) to be an element ofT , b andc must be such that the rectangle[0, b]× [0, c] is
cut by the line{(y, z): y + z= a}.

Adding the three projected areas produces

ab+ bc+ ac− a
2 + b2 + c2

2
.

But each of the fourPFi has total area 1/2, so the expression above must be halved
produceG(a,b, c), and, plugging this into (2), we conclude thatπ(a, b, c)= 0 onT .

Fig. 2. Case 1:F3.

Fig. 3. Case 2:F2.
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Fig. 4. Case 3:F1.

OutsideT , weak dominance considerations allow us to restrict consideration to th
cube. If (a, b, c)∈ [0,1]3\T , there are two cases to consider:

Case a: a + b+ c� 2 but one of the bids exceeds the sum of the other two; and
Case b: a + b+ c > 2 but none of the bids exceeds the sum of the other two.

For both cases, the polynomial expression forπ is the same as that given in (2); the on
difference is in the calculation ofG(a,b, c).

Case a. Again the intersection of[0, a] × [0, b] × [0, c] with F t has zero probability
By the convention thata � b � c, it is thea bid that exceeds the sum of the other two, a
this alters theG(a,b, c) calculation only in Case 3, where it is increased by the outw
shifting of the diagonal boundary of the pentagon. But this increased value ofG(a,b, c)

only drivesπ below zero and so such bid triples are not profitable.
Case b. Now the intersection of[0, a] × [0, b]× [0, c] with F t has positive probability

but the other three intersections are the same as in Cases 1, 2, and 3, soG(a,b, c) is again
increased andπ is again negative. ✷

The construction for the second-price pure chopstick case is very similar. Let 2T denote
the convex hull of the four points(2,2,0), (2,0,2), (0,2,2), and(0,0,0).

Corollary 2. The uniform probability measure on the surface of 2T generates a symmetric
equilibrium of the pure chopstick second-price auction game.

Proof. Let G′ be the cdf of this uniform measure. The expected profit of the pure t
(a, b, c)∈ 2T is now

π ′(a, b, c) ≡ 2G′(a, b,1)+ 2G′(a,1, c)+ 2G′(1, b, c)− 4G′(a, b, c)

− a
2
G′(a,1,1)− b

2
G′(1, b,1)− c

2
G′(1,1, c), (3)

since the expected payment of a winning bid against a uniformly distributed l
bid is half the winning bid. ButG′(a, b, c) = G(a/2, b/2, c/2) and soπ ′(a, b, c) =
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π(a/2, b/2, c/2)= 0. The argument that there are no profitable triples in[0,2]3\2T is
similar to the analogous part of the proof of Theorem 1.✷

We will continue to exploit the close relationships between the equilibria of first-
second-price auctions in subsequent sections. In addition, the relationships between
these and auctions with artificial payment rules will be the key to all the “impure” chop
auction development.

3. The case 0 < α < 1

Let a “payment rule”p :R+ →R+ be a nondecreasing, continuous function (of a sin
bid) with the property that limx→∞ p(x)= ∞, and define the generalized inverse funct
p−1(x) = sup{x ′: p(x ′) = x}. Consider artificial variants of the first-price chopsti
auctions which differ only in that the winning bidder paysp(x) instead ofx when a bid ofx
wins any of the objects. Denote byΓ (α,p) the game defined by marginal third valueα and
payment rulep. Of course, ifI is the identity function, thenΓ (α, I) is the original first-
price chopstick auction defined by the parameterα. Tie-break rules are left unspecified f
now; we are not necessarily assuming the same tie-break rule in bothΓ (α,p) andΓ (α, I).
More notation:p(x, y, z)≡ (p(x),p(y),p(z)). Similarly for p−1.

Proposition 3. If Gp is a cumulative distribution function having atomless marginal
distributions that generates a symmetric equilibrium for Γ (α,p) with some tie-break rule,
then GI ≡Gp ◦ p−1 generates a symmetric equilibrium for Γ (α, I) with some tie-break
rule.

Since ties occur with probability zero againstGp , the expected profit of the bid tripl
(x, y, z) againstGp in Γ (α,p) is

πp(x, y, z) ≡ 2Gp(x, y,∞)+ 2Gp(x,∞, z)+ 2Gp(∞, y, z)
− (4− α)Gp(x, y, z)− p(x)Gp(x,∞,∞)− p(y)Gp(∞, y,∞)
− p(z)Gp(∞,∞, z).

Whenp is strictly monotone, the expected profit of the bid triplep(x, y, z) againstGI in
Γ (α, I) is evidently

πI
(
p(x, y, z)

) = 2Gp(x, y,∞)+ 2Gp(x,∞, z)+ 2Gp(∞, y, z)
− (4− α)Gp(x, y, z)− p(x)Gp(x,∞,∞)− p(y)Gp(∞, y,∞)
− p(z)Gp(∞,∞, z),

so any image underp of a maximizer ofπp is a maximizer ofπI and the argument i
complete. The complications come with flats inp, and this is where the tie-break ru
for Γ (α, I) becomes relevant. For a complete proof, which identifies the class of u
tie-break rules, see Appendix A.
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For eachα ∈ (0,1) our goal is to come up with a choice of payment rulep for which
we can compute a symmetric equilibrium ofΓ (α,p). Toward this end, letβ ≡ α/(2− α)
and define a tetrahedron analogously toT in Section 2 by

Tβ ≡
{
(x, y, z): x + y + z� 2+ β, x � y + z

1+ β , y � x + z
1+ β , z� x + y

1+ β
}
.

(Alternatively,Tβ is the convex hull of the four points(1,1, β), (1, β,1), (β,1,1), and
(0,0,0). Intuitively, the closer isα to one: the higher isβ and the slimmer isTβ.) Each of
the four faces of the surfaceSβ of Tβ is identified asFi, i = 1,2,3, t, using the code tha
is the obvious analogue to that in Section 2, and fori �= t the projections onto the space
the two smaller coordinates are again identified, respectively, asPFi. Now letµβ be the
unique probability measure onSβ :

(i) which is uniform on all four faces separately;
(ii) which assigns equal total measure to the facesF1, F2, andF3; and
(iii) whose restriction toF3 ∪ F t projected onto thePF3-plane is uniform.7 (This

projection is depicted in Fig. 5.)

Proposition 4. For α ∈ (0,1), the probability measure µβ generates a symmetric
equilibrium for Γ (α,pβ) for all tie-break rules, where

pβ(x)=



2− β − β2

1
β

− β + 1
2 − β2

2

if 0� x < β,

x2(2− β − β2)

x(2+ β)− x2
(
β + β2

2

)− β − β2

2

if β � x < 1,

x if 1� x.

Notice first that this payment rule satisfies the assumptions of Proposition 3 and s
that it is constant on[0, β). Sinceµβ has no atoms, ties occur with probability zero

Fig. 5. Projection ofF3∪ Ft .

7 Condition (iii) corrects for the fact that whenα �= 0, F t no longer possesses the same symmetric relation
to the otherFi as whenα = 0.
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Hµ(a,b) Zµ(a,b)

Zµ(a)= Zµ(0, a)
Fig. 6.

the equilibrium ofΓ (α,pβ). But since the marginals ofµβ assign positive probability to
[0, β), there will be ties with positive probability at the induced equilibrium ofΓ (α, I).

Before proving Proposition 4, we need some additional notation. Ifµ is any measure
on Sβ, let Pµ denote the projection onto thePF3-plane of its restriction toF3 ∪ F t.
Now for (a, b) ∈ R2+, let Hµ(a, b) be thePµ-measure of([0, a] × [0, b]); let Zµ(a, b)
be thePµ-measure of the triangle generated by the points(βa, a), (β(a + b), a + b),
and (βa + (1 + β)b, a); and letZµ(a) = Zµ(0, a) be thePµ-measure of the triangl
generated by the points(0,0), (a,βa), and(βa, a). (See Fig. 6, the panels of which dep
the polygons whose measures are specified above.8)

The heart of the proof consists of a series of lemmas. Lemma 5 states that the
the first four terms of the profit function relative toany symmetric probability measureµ
on Sβ can be expressed as the sum of terms that are each functions only of pairs
three bids.

Lemma 5. If Jµ is the distribution function associated with any symmetric probability
measure µ supported on Sβ and

Q(a,b)≡ 2Hµ(a, b)+ α
2

(
Zµ(a)+Zµ(b)

)+ (2− α)Zµ(b, a − b),
then for any (a, b, c)∈ Tβ

8 The depictions in Fig. 6 assume 1> a > b anda > β(a+ b).
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Q(a,b)+Q(a, c)+Q(b, c)
= 2Jµ(a, b,∞)+ 2Jµ(a,∞, c)+ 2Jµ(∞, b, c)− (4− α)Jµ(a, b, c).

Proof. See Appendix A. ✷
Lemma 6 states that in the special case of the distribution functionGµβ generated

byµβ , the same profit terms can be separated into functions of the individual variab9

Lemma 6. If V (a)= 2Hµβ (a, a)+ αZµβ (a) and (a, b, c) ∈ Tβ, then

V (a)+ V (b)+ V (c) = 2Gµβ (a, b,∞)+ 2Gµβ (a,∞, c)+ 2Gµβ (∞, b, c)
− (4− α)Gµβ (a, b, c).

Proof. See Appendix A. ✷
The final lemma lists the functional forms needed in the proof of the proposition.

Lemma 7. Zµβ (x)=
x2(1− β2)

2(2− β − β2)
, Hµβ (x, x)=

x2(1− β)
2− β − β2 ,

Gµβ (x,∞,∞)=



x2
( 1
β

− β + 1
2 − β2

2

)
2− β − β2 if 0 � x < β,

x(2+ β)− x2
(
β + β2

2

)− β − β2

2

2− β − β2 if β � x < 1,

1 if 1 � x.

Proof. The proof of Lemma 7 follows directly from the definitions.✷
Finally we come to

Proof of Proposition 4. First, if (x, y, z) ∈ Tβ, then from Lemma 6

πpβ (x, y, z) = V (x)+ V (y)+ V (z)− pβ(x)Gµβ (x,∞,∞)
− p(y)Gµβ (∞, y,∞)− p(z)Gµβ (∞,∞, z).

But for 0� x < 1, V (x) = pβ(x)Gµβ (x,∞,∞)= x2 and soπpβ is identically zero on
the tetrahedron.

For (x, y, z) ∈ [0,1]3\Tβ, there are, as in Section 2, two cases.

Case a: x+y+ z� 2+β, but one of the bids exceeds the sum of the other two multip
by (1+ β)−1; and

9 We have decomposed the separability argument into two steps (Lemmas 5 and 6) to highlight that th
step goes through in more general settings. This observation may prove useful beyond the present settin
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Case b: x+y+z > 2+β but none of the bids exceeds the sum of the other two multip
by (1+ β)−1.

Case a. Assume that it is the conditionx � (y + z)/(1 + β) that is violated. There
are two possibilities: First ify or z is smaller thanβ andx � β−1y, thenHµ(x, y) must
be replaced in Lemma 5 byHµ(β−1y, y), which is strictly smaller and results in small
values forπpβ (x, y, z). Otherwise, the calculation ofJµ(x, y, z) in the proof of Lemma 5
must be increased as in Casea of Theorem 1 for the pure chopstick case. As there,
result is a decrease in profits.

Case b. Assume now that the conditionx+y+z� 2+β is violated. In this case the bi
triple sometimes wins all three objects againstF t . As in Caseb of the proof of Theorem 1
this reduces profits. ✷

Propositions 3 and 4 immediately lead to

Theorem 8. For 0< α < 1, if pβ is defined as in Proposition 4, then Gµβ ◦ p−1
β generates

a symmetric equilibrium of the first-price auction Γ (α, I) for some class of tie-break rules.

Once again, the second-price auction construction can be found by modifying the
price construction.

Theorem 9. Let qβ(x)= ∂V (x)/∂Gµβ (x,∞,∞). ThenGµβ ◦ q−1
β generates a symmetric

equilibrium of the second-price auction for some class of tie-break rules.

Proof. First observe that

qβ(x)=


2− β − β2

1
β

− β + 1
2 − β2

2

if 0 � x < β,

2x(2− β − β2)

2+ β − 2x
(
β + β2

2

) if β � x < 1;

so qβ, like pβ, is continuous, constant on[0, β), and increasing on[β,1]. Hence we
can define the tie-break rule in the second-price auction between the bid vectorsqβ(x)
and qβ(y) to be the same as betweenpβ(x) and pβ(y) in the first-price auction. Next
in Proposition 4 we have shown that the probability measureµβ generates a symmetr
equilibrium inΓ (α,pβ). Here the players are again randomizing according to the s
distribution, but instead of bidding(x, y, z), or pβ(x, y, z) as in Γ (α, I), they bid
qβ(x, y, z). If they do so, the revenue parts of their payoffs are clearly the same
Γ (α,pβ), so we only have to show that the cost parts are also the same. InΓ (α,pβ) the
expected cost of thex bid was

pβ(x)Gµβ (x,∞,∞)= V (x).
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The expected cost of biddingqβ(x) in the second-price auction againstµβ ◦ q−1
β is clearly

x∫
0

qβ(y)dGµβ (y,∞,∞)=
x∫

0

∂V (y)

∂Gµβ (y,∞,∞)
dGµβ (y,∞,∞).

But this is justV (x)− V (0)= V (x) by the Fundamental Theorem of Calculus.
That no deviations are profitable is similar to the argument in the proof of Pro

tion 3. ✷

4. The case α < 0

Sinceα < 0, there is a preliminary issue of whether negative bids should be allowe
it turns out, even when they are allowed they are not used in the equilibrium we con
so it does not matter, but for formality’s sake, we allow them. Next notice that the si
α was immaterial to the proof of Proposition 3, which will play the same role here
Section 3.

Now, for eachα ∈ (−∞,0) defineβ , Tβ, andµβ exactly as in Section 3. We reta
the same notation for the faces and projections of faces of the tetrahedron. Note thβ is
always between−1 and 0, so three of the extreme points ofTβ are now outsideR3+. The
projection onto thePF3-plane of the restriction ofµβ to F3 ∪ F t is depicted in Fig. 7
Intuitively, the closer isα to −∞: the closer isβ to −1 and the thicker isTβ.

Proposition 10. For α ∈ (−∞,0), the probability measure µβ generates a symmetric
equilibrium for Γ (α, p̂β) for all tie-break rules, where

p̂β(x)=


0 if −∞ � x < 0,

x2(2− β − β2)

x(2+ β)− x2
(
β + β2

2

)− β − β2

2

if 0� x < 1,

x if 1� x.

Notice first that this payment rule satisfies the assumptions of Proposition 3 and s
that it is constant on[−∞,0).Notice also its similarity to the payment rulepβ in Section 3.

Fig. 7. Projection ofF3∪ Ft .
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The proof of Proposition 10 follows that of Proposition 4 with a couple of excepti
Now, for (a, b) ∈ R2+, Hµ(a, b) is thePµ-measure of([β,a] × [β,b]), Zµ(a, b) is the
Pµ-measure of the triangle generated by the points(βa, a), (β(a + b), a + b), and
(βa + (1 + β)b, a), andZµ(a) is thePµ-measure of the triangle generated by the po
(0,0), (a,βa) and(βa, a). (See Fig. 8, which includes depictions for some cases in w
one of the arguments is negative.)

The statements and proofs of Lemmas 11 and 12 are now identical to those of Lem
and 6, respectively. (We provide copy of the statements, but not the proofs, belo

Hµ(a,b) (a > b > 0) Hµ(a,b) (a > 0> b)

Zµ(a,b) (a > 0) Zµ(a,b) (a < 0)

Zµ(a) (a > 0)

Fig. 8.
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convenience. But the reader should be careful to note that the geometry behind the
has different forms when one of the bids is negative.)

Lemma 11. If Jµ is the distribution function associated with any symmetric probability
measure µ supported on Tβ and

Q(a,b)≡ 2Hµ(a, b)+ α
2

(
Zµ(a)+Zµ(b)

)+ (2− α)Zµ(b, a − b),
then for any (a, b, c)∈ Tβ

Q(a, b)+Q(a, c)+Q(b, c) = 2Jµ(a, b,∞)+ 2Jµ(a,∞, c)
+ 2Jµ(∞, b, c)− (4− α)Jµ(a, b, c).

Lemma 12. If V (a)= 2Hµβ (a, a)+ αZµβ (a) then

V (a)+ V (b)+ V (c) = 2Gµβ (a, b,∞)+ 2Gµβ (a,∞, c)
+ 2Gµβ (∞, b, c)− (4− α)Gµβ (a, b, c).

Lemma 13 parallels Lemma 7. The only difference is in the algebraic form ofGµβ .

Lemma 13. Zµβ (x)=
x2(1− β2)

2(2− β − β2)
, Hµβ (x, x)=

x2(1− β)
2− β − β2

,

Gµβ (x,∞,∞)=


irrelevant if −∞ � x < 0,

x(2+ β)− x2
(
β + β2

2

)− β − β2

2

2− β − β2 if 0 � x < 1,

1 if 1 � x.

As with Lemma 7, the proof of Lemma 13 follows directly from the definitions. (T
reason it is not necessary to knowGµβ (x,∞,∞) whenx < 0 is thatp̂β (x)= 0 there.)

Proof of Proposition 10. First, if (x, y, z) ∈ Tβ, then from Lemma 12

πp̂β (x, y, z) = V (x)+ V (y)+ V (z)− p̂β (x)Gβ(x,∞,∞)
− p̂β(y)Gβ(∞, y,∞)− p̂β (z)Gβ(∞,∞, z).

But for 0� x < 1, V (x)= p̂β (x)Gβ(x,∞,∞)= x2 and soπp̂β is identically zero on the
tetrahedron.

For (x, y, z) ∈ [0,1]3\Tβ there are, as in Sections 2 and 3, two cases. The argume
both are identical to those in the proof of Proposition 4.

Case a: x+y+ z� 2+β, but one of the bids exceeds the sum of the other two multip
by (1+ β)−1; and

Case b: x+y+z > 2+β but none of the bids exceeds the sum of the other two multip
by (1+ β)−1.
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Case a. Assume that it is the conditionx � (y + z)/(1 + β) that is violated. There ar
two possibilities: First ify or z is smaller thanβ andx � β−1y, thenHµ(x, y) must be
replaced in Lemma 11 byHµ(β−1y, y), which is strictly smaller and results in small
values forπp̂β (x, y, z). Otherwise, the calculation ofJµ(x, y, z) in the proof of Lemma 11
must be increased as in Casea of Theorem 1 for the pure chopstick case. As there,
result is a decrease in profits.

Case b. Assume now that the conditionx+y+z� 2+β is violated. In this case the bi
triple sometimes wins all three objects againstF t . As in Caseb of the proof of Theorem 1
this reduces profits. ✷

Propositions 3 and 10 immediately lead to

Theorem 14. For −∞ < α < 0, if p̂β is defined as in Proposition 10, then Gβ ◦ p̂β
−1

generates a symmetric equilibrium of the first-price auction for some class of tie-break
rules.

Again the second-price auction construction can be found by modifying the first-
construction. The proof parallels the proof of Theorem 9 and is omitted.

Theorem 15. If q̂(x) = ∂V (x)/∂Gµβ (x,∞,∞) then Gµβ ◦ q̂−1 generates a symmetric
equilibrium of the second price auction for some class of tie-break rules.

5. Discussion

We have constructed symmetric equilibria for a class of complete-informa
simultaneous sealed-bid auction games with two bidders, three identical object
marginal valuations that increase at first and then decrease. The method is
tetrahedron-based symmetric equilibria for a related class of artificial auctions an
to transform the mixtures in a particular way. The method works both when the ga
interest is a first- or second-price auction.

There are two main novelties in this. One is the establishment of a useful relatio
between different auctions through the “payment rule.” By choosing just the right pay
rules, simple equilibria can be found and transformed. This turns out to be a
discovery for a much wider class of auction models, including incomplete-inform
auctions. Although in some ways reminiscent of the “revenue equivalence theore
establishes a relationship that is deeper and more directly based on strategic conside
See (Szentes, 2001) for more about this method.

The second novelty is the use of mixtures whose supports are surfaces of tetr
and whose best-response sets are the tetrahedra themselves. The discovery of
quite fortuitous; that the set of best responses is of higher dimension than the sup
the mixture makes finding the mixture through numerical means unlikely if algori
are based on better- or best-response dynamics. (If such an algorithm started n
equilibrium, it would tend to increase probability on the best response set and the
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move away from the equilibrium.) Indeed, it was by no means clear to us ex ante wh
dimension of the support of the equilibrium mixture would turn out to be.

It is tempting to think in more general terms of symmetric equilibria having convex
response sets whose boundaries are the supports of the mixtures. But even though
of the support surrounding the set of best responses does seem to work, convexit
best-response set does not in general. To see that the transformed tetrahedra in Se
and 4 are not generally convex sets, take the example ofβ = 0.2 (i.e.,α = 1/3). Two of the
extreme points ofT0.2 are(0.2,1,1) and(1,0.2,1); and so(0.6,0.6,1) is the midpoint of
the extremal edge between them. Now from Proposition 4,p0.2(1)= 1, p0.2(0.2)= 1/3,
andp0.2(0.6)≈ 0.62. So(p0.2(0.2,1,1)+ p0.2(1,0.2,1))/2= (2/3,2/3,1) cannot be the
p0.2-image of any point inT0.2.

We are also interested in extending our constructions beyond the 2-bidder, 3-
setting of this paper. Generalizing the pure chopstick example to the case ofn (> 3)
objects with bidders desiring exactlyk (> n/2) of them, a simple symmetric equilibrium
with a one-dimensional support exists when the number of bidders is sufficiently larg
(Szentes and Rosenthal, 2001). It is also possible to find symmetric equilibria for
object cases with two bidders when the marginal valuations are monotone increasin
equilibria that we can construct in these cases take on simple forms; again the them
support surrounding the set of best responses recurs. All of this is the subject of o
research.

Of course, whether knowing any of this equilibrium structure is of use to bidders in
auctions is somewhat dubious. When the set of best responses to the equilibrium m
is so large, what discipline should a bidder put on his bidding strategy? On the other
it ought to be that knowing what equilibrium structures look like in theory should inf
the bidder at least on where to focus his thoughts.

Finally, we should point out a related class of games that is also of historical int
“Colonel Blotto” games are two-person zero-sum games of force (or budget) allocati
the case that seems closest to our pure chopstick game, the two players each hav
of force to be allocated among three battles. The winner of each battle is the playe
assigns more force to it than the opponent does, and the winner of the game is the o
wins two of the three battles. As far as we know, the first symmetric equilibria of this g
were constructed by Borel (see (Borel and Ville, 1938); also (Laslier and Picard, 2
These both involve two-dimensional supports; and one of them involves first putt
uniform measure on the hemisphere which sits above the disc that is inscribed in th
simplex ofR3, and then projecting that measure onto that inscribed disc. This gen
a measure that is no longer uniform but that has uniform marginals. So there are a
of our pure chopstick construction that are reminiscent of Borel’s disc solution, bu
support of the mixture surrounding the set of best responses apparently has no cou
there.
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Appendix A

Proof of Proposition 3. We first introduce the following additional notation:x = (x1, x2, x3) ∈ R3; A(x) =
{x′: p(x′)= p(x)}; and for any cumulative distribution functionG, µG is the associated probability measure.

LetN(x,y) be the expected revenue (profits plus payments) inΓ (α,p) if the bid-triple of the player isx and
the bid-triple of the opponent isy. LetMi(x,y) be the probability that bid-triplex wins theith object against
bid-triple y in Γ (α,p). (So if xi �= yi , thenMi(x,y) is one ifxi is bigger thanyi and zero otherwise.) Then th
expected payoff of a player biddingx against the opponent biddingy in Γ (α,p) is

Wp(x,y)≡N(x,y)−
3∑
I=1

Mi(x,y)p(xi ).

Let the expected payoff to a player bidding the triplex in Γ (α,p) againstµGp be

Up(x)≡
∫
R3

Wp(x,y)dµGp .

The key to the proof is simply noticing that inΓ (α,p) randomizing on suppµGp according toµGp is
equivalent to randomizing first on the image underp of suppµGp according toµGI and then for eacha in
suppµGI randomizing on{x: p(x) = a} according to the restriction ofµGp to this set, that is according to th
conditional probability measure

µa ≡ µGp

µGp ({x: p(x)= a}) .

(The measureµa is not yet defined when the denominator above is zero.)
There are two possibilities:

(i) µa can be any measure on the intersection if

suppµGp ∩ {x: p(x)= a
} �= ∅;

(ii) µa can be any measure on{x: p(x)= a} if

suppµGp ∩ {x: p(x)= a
}= ∅.)

Therefore dµGp = dµa dµGI , and we rewrite

Up(x)=
∫
R3

∫
{y: p(y)=a}

Wp(x,y)dµa(y)dµGI (a).

If Gp generates a symmetric equilibrium forΓ (α,p), then this expression must be constant on suppµGp and
weakly smaller outside this support.

Now we are ready to define the needed class of tie-break rules inΓ (α, I ). The idea is: For bid-triples whos
inverse images underp are not single-valued, the tie-break probabilities inΓ (α, I ) are inherited according t
the equilibrium probabilities inΓ (α,p). Formally, if theith coordinates ofp(x) andp(y) are the same, then th
probability thatxi wins is

Mi
(
p(x),p(y)

)≡
∫

′

∫
′

Mi(x′,y′)dµp(x) dµp(y).
y ∈A(y) x ∈A(x)
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(For ties outside the range ofp, no tie-break rule need be specified.) Expected revenue is therefore

N
(
p(x),p(y)

)=
∫

y′∈A(y)

∫
x′∈A(x)

N(x′,y′)dµp(x) dµp(y).

So the expected payoff to a bidder biddingp(x) againstp(y) in Γ (α, I ) is:

WI
(
p(x),p(y)

)=
∫

y′∈A(y)

∫
x′∈A(x)

(
N(x′,y′)−

3∑
i=1

Mi(x′,y′)p
(
x′
i

))
dµp(x) dµp(y),

and the expected payoff from biddingp(x) is:

UI
(
p(x)

)=
∫
R3

WI
(
p(x),p(y)

)
dµGI .

Applying Fubini’s Theorem we get:

UI
(
p(x)

) =
∫

x′∈A(x)

∫
R3

∫
y′∈A(y)

(
N(x′,y′)−

3∑
i=1

Mi(x′,y′)p
(
x′
i

))
dµp(y) dµGI dµp(x).

Observe that the outermost integrand is justUp(x′), soUI (p(x)) can be rewritten as

UI
(
p(x)

)=
∫

x′∈A(x)
Up(x′)dµp(x). (A.1)

ButUp is constant on the support ofµGp, and therefore so isUI on the image underp of that support, which
is the support ofµGI . It is also clear that ifp(x′) ∈ range(p)\suppµGI , UI (p(x

′)) can be no larger than the sam
constant, since otherwisex′ would have been a profitable deviation inΓ (α,p).

There remains the possibility of a deviation to a triple(z1, z2, z3) that includes a bid, sayz1, outside (i.e.,
below) the range ofp. Since such a bid wins with probability zero, it only remains to show that its compan
do not earn positive profits. To have a chance, both of these bids must be in the range ofp. But using the tie-break
probabilities that are in effect for(0,p−1(z2),p

−1(z3)) in Γ (α,p), we see that the deviation cannot be profita
in Γ (α, I ). ✷
Proof of Lemma 5. Assume(a, b, c) ∈ Tβ and, without loss of generality, thata � b � c. For simplicity, we
suppress theµ-subscript.

Calculation ofJ(a, b,∞): By definition, both bids in the pair(a, b) win againstF3 ∪ Ft with probability
H(a,b). They win againstF2 with probabilityZ(b) and againstF1 with probabilityZ(a)− Z(b,a − b). The
analogous expressions forJ(a,∞, c) andJ(∞, b, c) are derived similarly.

Calculation ofJ(a, b, c): First, since(a, b, c) ∈ Tβ , all three bids win all three objects againstFt with
probability zero. They win againstF3 with probabilityZ(c), againstF2 with probabilityZ(b)− Z(c,b − c),
and againstF1 with probabilityZ(a)−Z(b,a − b)−Z(c,a − c).

Direct substitution now establishes the result.✷
Proof of Lemma 6. Again we suppress the subscripts for simplicity. LetM =H(a,a)+H(b,b)− 2H(a,b).
ThenQ(a,b) can be rewritten as

H(a,a)+H(b,b)+ α
2

[
Z(a)+Z(b)]+ (2− α)Z(b,a − b)−M.

NowM is thePµ-measure of the square generated by the points(a, a) and(b, b) and so is just a constant time
(a − b)2. Z(b,a − b) is the measure of the union of two right triangles, both having height(a − b); one having
length(a−b), and the other having lengthβ(a−b). SoZ(b,a−b) is the same constant times(1+β)(a−b)2/2.
Since(1+ β)= 2/(2− α), we have

Q(a,b)=H(a,a)+H(b,b)+ α [Z(a)+Z(b)].

2
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Therefore

Q(a,b)+Q(a, c)+Q(b, c) = V (a)+ V (b)+ V (c), whereV (a)= 2H(a,a)+ αZ(a). ✷
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