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DEFINABLE AND CONTRACTIBLE CONTRACTS

BY MICHAEL PETERS AND BALÁZS SZENTES1

This paper analyzes Bayesian normal form games in which players write contracts
that condition their actions on the contracts of other players. These contracts are re-
quired to be representable in a formal language. This is accomplished by constructing
contracts which are definable functions of the Godel code of every other player’s con-
tract. We provide a complete characterization of the set of allocations supportable as
pure-strategy Bayesian equilibria of this contracting game. When information is com-
plete, this characterization provides a folk theorem. In general, the set of supportable
allocations is smaller than the set supportable by a centralized mechanism designer.

KEYWORDS: Definability, contract theory, folk theorem.

1. SELF-REFERENTIAL STRATEGIES AND RECIPROCITY IN STATIC GAMES

IN THIS PAPER, we characterize the allocation rules attainable by players in
a Bayesian game when they have the ability to commit themselves by writing
contracts that condition on other players’ contracts.

The idea that contracts might condition on other contracts is not new in eco-
nomics. The most commonly known expression of this idea is well known in the
industrial organization literature (e.g., Salop (1986)) as the “meet the compe-
tition” clause in which one firm commits itself to lower its price when any of its
competitors does. A similar idea appears in trade theory as the principle of reci-
procity (Bagwell and Staiger (2001)). Countries enact trade legislation in which
they agree to abide by a trade agreement like GATT. Such legislation commits
the country to lowering tariffs in response to trade legislation by another coun-
try that lowers tariffs, provided this other country’s legislation agrees to abide
by GATT. Finally, tax treaties sometimes have this flavor, for example, out of
state residents who work in Pennsylvania are exempt from Pennsylvania tax as
long as they live in a state that has a reciprocal agreement that exempts out of
state residents (presumably from Pennsylvania) from state taxes.

In all of these examples, commitments are made that are conditional on
commitments of others, and are used to support cooperative outcomes. The
literature treats these situations as static games of complete information. Ad-
ditionally, the contracts that are used to support equilibrium are idiosyncratic,
so that only the simplest most stylized problems are amenable to analysis. For
example, in the meet the competition argument, firm A offers to sell at a high
price provided its competitor, firm B, also sets a high price. If instead, B offers
any price below the highest price, A commits itself to sell at its marginal cost.
If B believes this commitment, then one best reply for B is to set the highest
price. In the trade and taxation treaties mentioned above, a state cooperates

1We would like to thank the editor and three referees for many useful suggestions that we
ended up incorporating into the paper.
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by offering a reciprocal contract that cooperates if and only if the other state
does the same.

Tennenholtz (2004) suggested a way to model mutually dependent commit-
ment devices. His players compete using computer programs that condition
their actions on other programs. He showed that all individually rational out-
comes in complete information games can be supported as equilibria.2 Basi-
cally, two programs implement cooperative actions if they know that they have
the same syntax; otherwise, they punish each other. As he was only concerned
with showing that individually rational outcomes can be supported as program
equilibrium, he did not give a complete description of what the set of possible
programs looks like. Kalai, Kalai, Lehrer, and Samet (2010), whose method we
illustrate below, specifically constructed a set of commitment devices for a two
player game of complete information with the property that outcome functions
are supportable as equilibria in these commitment devices if and only if they
are individually rational.

This paper considers a two-stage contracting game in a Bayesian environ-
ment. At the first stage, players offer contracts. A contract restricts the action
spaces of a player as a function of the other contracts. At the second stage, play-
ers take actions from their restricted action spaces. Our objective in this paper
is twofold. First, we identify two properties of any abstract contract space that
lead to a complete characterization of supportable outcomes. We refer to these
properties as cross-referentiality and invariant punishment. Cross-referentiality
is a generalization of the Tennenholz idea that contracts can recognize each
other. Invariant punishment means that if a player wants to, he can write con-
tracts that commit him to any of his pure actions, while inducing the same
reaction from the other players each time. It is this property that allows us to
show that players’ payoffs cannot be held below their individually rational level
in games of complete information.3 Second, we show that there exists a con-
tract space which satisfy these properties. We assume that the set of feasible
contracts is a set that consists of finite texts written in some language. Con-
ditional on the language, this description of contracts is natural and has the
advantage that the set of contracts is universal in the sense that the same set
of feasible contracts can be used to model competition in every environment.
This set is at once rich, descriptive, and must, within limits set by the language
in which contracts are written, be robust to the introduction of new contracts.
We explain how these contracts can be written so that they specify actions that
are conditional on the contracts of other players.

2By “individually rational outcome” in a game of complete information, we mean an outcome
in which each player receives at least his minmax payoff.

3More specifically, if players can react to the outcomes of a deviation by appropriately crafting
their contract, then they could conceivably respond to the action that a deviating player takes.
This would make it possible to keep some players’ payoffs at their maxmin level, instead of just
their minmax.
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We use our methods to show how to extend the static complete information
folk theorem results of papers like Tennenholtz (2004) or Kalai et al. (2010) to
games of incomplete information. We provide a complete characterization of
outcomes that can be supported as (pure-strategy) equilibria in finite contract-
ing games of incomplete information. Although there is no agreed definition
in the literature of what a folk theorem would say in games with incomplete
information, our results do indicate that contracts are more restrictive in such
games. In the complete information case, it is known that outcomes in which
every player receives more than his or her minmax payoff can be supported
as an equilibrium in contracts with the appropriate choice of commitment de-
vices. One way to think of such outcomes is that they are the outcomes that
could be supported by a centralized mechanism designer, who can enforce ac-
tions of all players who agree to participate in his mechanism and who min-
maxes players who unilaterally decide not to participate. In the incomplete
information case, we show that there are outcome functions that a centralized
mechanism designer like this can support, but which cannot be supported with
contracts.

The reason that a folk theorem like result does not hold with incomplete
information has to do with “participation.” A player who does not play along
with some cooperative agreement enforced by contracts will still observe any
information that the contracts themselves convey about the types of the other
players. In the play of the ensuing game, the deviator can make use of this
information when choosing his actions. To capture this, we show that outcome
functions are supportable if and only if they are supportable by a mechanism
designer who can condition actions only on publicly observable messages.

1.1. Contractible Contracts

When trying to describe a broad set of feasible contracts, it is easy to get lost
in complexities associated with the infinite regress that arises when a contract
specifies a commitment that depends on whether another contract specifies a
commitment that depends on whether the first contract specifies � � � � One way
to get around this infinite regress is simply to impose ad hoc restrictions on the
set of feasible contracts to ensure that the infinite regression does not arise.
This is the approach developed in Kalai et al. (2010). We explain this approach
briefly to motivate the broad approach that we adopt.

We can apply the argument in Kalai et al. (2010) to a simple two player
prisoner’s dilemma. We want to construct a set of commitment devices that
will support cooperation. Define a contract called This Contract which works
as follows

This Contract =
{
C� if other player’s contract = This Contract,
D� otherwise.

If both players in the prisoner’s dilemma offer This Contract, then they are un-
ambiguously obliged to cooperate. If one of the players offers something else,
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then the other is unambiguously required to defect. As long as the deviator’s
contract specifies some unambiguous outcome against This Contract, coopera-
tion is a Nash equilibrium. Depending on what other contracts are described by
the word “otherwise” in the sentence above, there may be many other possible
equilibrium outcomes as well.

To complete the description of the contracting game, letΘ be a set of feasible
contracts defined in such a way that θ ∈ Θ �⇒ θ :Θ → A. We are about to
judiciously construct Θ. We have just described a reciprocal contract θ∗ such
that

θ∗(θ′)=
{
C� if θ′ = θ∗,
D� otherwise.

Suppose we simply add to this a pair of “constant” contracts θc ∈Θ such that
θc(θ

′)≡ C and a contract θd ∈Θ such that θd(θ′)≡ d. The constant contracts
could be used to support the Nash equilibrium in the prisoner’s dilemma in the
obvious way. Since the outcomes (C�C) and (D�D) are the only two outcomes
for which all players receive at least their minmax payoffs, the collection con-
sisting of the contract θ∗ and the two constant contracts already supports all
outcomes for which each player receives at least her minmax payoff. Further-
more, if Θ = {θ∗� θc� θd}, it is pretty clear that no other (pure) outcomes can
be supported as equilibrium in contracts. In other words, now that we have the
set Θ, we have a complete characterization of the set of equilibrium outcomes.
This characterization amounts to a folk theorem.

One desirable feature of contracts that this approach lacks is that they be
robust to contractual innovation. Absent such a property, one is never sure
whether economic properties that emerge from a contractual model are not
just artifacts of the way the contracts are modelled. Ideally, if we want com-
mitment devices that can condition on the devices used by others, it would
be desirable that the set of feasible contracts or commitment devices would in-
clude all functions from itself into the set of feasible actions. This would ensure
that any new contract we could dream up would already be a feasible contract.
Unfortunately, this is impossible because the cardinality of the set of functions
with a given domain is larger than the cardinality of that domain (Cantor’s the-
orem). Our approach is instead to describe the largest set of contracts that can
be written in a finite set of characters using first-order logic.

This is not simply a theoretical issue. Observe that in the formulation above,
the set of contracts made available seems much too restrictive. Contracts de-
pend on other contracts, but in a very limited way. If a player offers the contract
that he is “supposed” to offer, then things go well; otherwise, something bad
happens. Yet this bad outcome cannot depend in any way on what the deviator
actually does. In other words, the punishment imposed on a deviator only de-
pends on the deviator’s identity and not on the actual deviation. This is not at
all a natural property of contracts that depend on other contracts. In Kalai et
al. (2010) and Tennenholtz (2004), this is true by assumption.
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Relaxing this constraint on contracts creates a difficulty when attempting
to provide a full characterization of supportable outcomes, because natural
bounds on outcomes like the minmax payoff themselves rely on this property.
When players minmax a deviating player, their actions do not vary with the
action the deviator takes. If contracts allow reactions to depend on deviations,
then, in principle, it might be possible to support outcomes in which some play-
ers’ payoffs are below their minmax payoffs. In the complete information envi-
ronment, there is an easy fix to this problem, which is to allow players to offer
contracts which do not specify a single action, but rather specify a subset of
their action spaces. With such a contract space, a deviator can always offer a
contract which does not restrict his action space at all and then he can best re-
spond to the action profile of the others. Then the worst possible punishment
players can impose on a deviator is indeed an action profile which minmaxes
him. Therefore, restricting attention to punishments which are independent of
the actual deviation is without loss of generality. Unfortunately, this same ap-
proach fails in games with incomplete information, because players who punish
a deviator might not restrict their action spaces to a single action precisely be-
cause they might not want to reveal too much information to a deviator. There-
fore, following a deviation, even the nondeviators will be forced to choose their
actions strategically. Hence, a deviator might actually benefit from restricting
his action space.

Furthermore, the set of feasible contracts described above is specially tai-
lored to the economic problem to which it is applied. The commitment de-
vices we just described obviously will not be much use in a game with more
than two players or more than two actions. Indeed, if we simply relabel the ac-
tions so that C stands for defection and D stands for cooperation, then these
commitment devices will support only the noncooperative outcome. We can
create new sets of commitment devices to handle these changes without much
problem. What we would like to do instead is to provide a set of commitment
devices that always works.

Perhaps more important, the contracts are obviously chosen because we
know we want to support a specific pair of actions. If we perturb the payoffs
in a way that changes the essential economics of the problem (for example,
by making the socially desirable outcome (C�D)), then we have to reconstruct
the set of contracts to get the result we want. We provide a set of contracts that
can be described independently of the (payoffs in the) game to which they are
applied. So there are two ways in which our contracts are universal. First, any
particular set of contracts, like the contracts we described above, can be rewrit-
ten in our language so that they are embedded in the larger set of contracts we
describe. Second, the set of contracts we describe can be used to model con-
tractual competition no matter what are the actual payoffs in the game.

Perhaps the main contribution of our approach is to show that even when
contracts are universal in the sense that we have described, we can still under-
stand the economic logic of contractual situations using a modified version of
the “minmax a deviator” logic that is described above.
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1.2. How Definability Works

We accomplish this universality by allowing players to write finite texts in a
first-order arithmetic language that describes their commitments. This allows
players to punish deviators in potentially very complex ways and involves no ad
hoc restrictions like those above. The way we do this is to observe that the texts
associated with contracts can be reinterpreted as definable functions of the
Gödel codes of texts written by other players. Since Gödel codes and definable
functions are unfamiliar to most economists, we give an informal description
of the method below.

We start by endowing each player with a formal language and require each
contract to be a text written in this language. A text is a finite string of sym-
bols. It is well known that there are bijections from the set of texts into the set
of integers. One such mapping is called Gödel coding. This implies that any
contract uniquely corresponds to an integer. A contract of a player is a map-
ping from contract profiles to subsets of his action space. Since the contracts
correspond to integers, one can think of such a contract as a description of
an arithmetic correspondence from the codes of contracts to the codes of the
names of the actions. There is a well known set of arithmetic correspondences,
called the definable correspondences, which can be precisely described in formal
language by using finitely many characters. (We formally define this set later.)
Hence, one can think of the contract space as the set of definable functions
from Nm → 2N, where m is the number of players. The domain of these func-
tions is the vectors of the codes of the players’ contracts and the range of these
functions is the subsets of the codes of the names of the actions. We identify
the contract space of a player with the set of definable correspondences.

To see how our approach works, return to the simple prisoner’s dilemma
game. Let [c] denote the Gödel code of the contract c and refer to [c] as the
encoding of c. For any pair of contracts c1 and c2, the action (C or D) taken
by player 1 is c1([c2]) and similarly for player 2. Since every pair of actions
determines a payoff, this procedure associates a unique payoff with every pair
of contracts.

There are many things that are not definable contracts that also have Gödel
codes. We want to make use of some of these other things. In particular, we
want to use definable functions with free variables. Interpreting n as the en-
coding of the other player’s contract, here is a definable contract with a free
variable:

γx(n)=
{
C� n= x,
D� otherwise.

A free variable has the natural interpretation that x can take on any integer
value. Definable contracts with free variables also have Gödel codes. The con-
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tract with free variable that we want is a slight modification of the one above,
in particular,

cx(n)=
{
C� n= [〈x〉(x)],
D� otherwise,

(1)

is also a contract with a free variable. The mapping 〈x〉(x) is the composition
of two functions. First, the function 〈x〉 is the inverse operation to the Gödel
coding; that is, 〈n〉 is the text whose Gödel code is n. Second, if φ is a text with
one free variable, then φ(n) is the same text where the value of the free variable
is set to be n. Hence, if n is a Gödel code of a definable contract with one
free variable, then 〈n〉(n) is itself a definable contract (without a free variable).
[〈n〉(n)] is just the Gödel code of whatever this definable contract happens to
be.

We want to create a contract by fixing a very specific value for x in (1). In
particular, the value of x we are interested in is [cx]. Since [cx] is the Gödel
code of a contract with a free variable, the right-hand side of (1) requires that
we decode [cx] to get cx, then fix x at [cx] to get the contract c[cx]. Putting all
this together gives

c[cx](n)=
{
C� n= [

c[cx]
]
,

D� otherwise,

so

c[cx]([c2])=
{
C� [c2] = [

c[cx]
]
,

D� otherwise.

This is the contract which corresponds to the one we called This Contract or
θ∗ in our discussion above. The difference is that This Contract now reacts to a
much broader set of contracts than to what θ∗ did. The contract θ∗ could only
respond to itself and to the two constant contracts. The contract c[cx] responds
to any definable function (in fact, it specifies an action for every finite text).

To press the analogy with θ∗ in the problem above, if player 2 also uses strat-
egy c[cx], then [c2] = [c[cx]], which evidently triggers the cooperative action by
player 1. The same argument applies for player 2. Player 2 can deviate to any
alternative definable strategy c′ that she likes. Since every definable strategy
has a Gödel code, the reaction of player 1 and, consequently, both players’
payoffs are well defined. As the Gödel coding is injective, c′ �= c[cx] implies the
Gödel code of c′ is not equal to [c[cx]], and the deviation by player 2 induces
player 1 to respond by switching from C to D.

What this argument illustrates is that our contract space is large enough that
we can always find a contract that corresponds to θ∗ in our existing set of con-
tracts, without having to construct it explicitly from the details of the game.
This is the property that makes our contracts universal in the sense that exactly
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the same set of contracts can be used to characterize equilibrium outcomes in
all games.

The introduction of Gödel coding into our model requires some explanation.
Take it as given that contracts must be expressed in a formal language. Then a
contract of a player must give precise instructions on how to restrict his action
space as a function of the texts submitted by the other players. To describe the
contracting game, one must carefully define the notion of precise instructions
and the set of those texts which give these instructions. Any such definition
would lead to a definition of a set of arithmetic correspondences which can
be described as finite texts. To see this, suppose that there is a text which gives
instructions on how to pin down a subset of a player’s action space as a function
of the other texts. Then there is also a text that gives the same instructions as
a function of the Gödel codes of texts of other players instead of their texts.
This is because the Gödel coding and its inverse are definable functions, that
is, they can be described as texts.4 This implies that this new text describes an
arithmetic correspondence. In the paper, we adopt the definition of definable
functions from number theory instead of introducing a new definition.

Since the set of definable functions is the largest set of arithmetic functions
which can be described in a first-order language, our contract space is the
largest given the restriction to contracts which can be expressed as texts. Im-
plicitly, our approach makes it possible for players to offer any finite text as a
contract. We simply identify the original text with the corresponding definable
mapping.

In the prisoner’s dilemma example above, we assume that a contract of
player 1 is a definable function, say c(x) and that player 1 can take action a
(∈ {C�D}) if and only if the code of a is in the set c([c2]), where c2 is the code
of player 2’s contract. If we allow players to write any text as contracts, then
they could write down the following text:

My contract can be described by the following definable function: c(x), where the inter-
pretation of c(x) is the following. If the code of the text of the contract of player 2 is x,
then I can only take action a if the Gödel code of a is in c(x). Finally, the Gödel code of a
text is defined as follows: � � � �

Since the Gödel coding is a recursive function, the ellipses (� � �) can be re-
placed by a precise description of this coding. All we do is to identify the text
above with c(x).

2. LITERATURE

As we mentioned in the Introduction, our paper is not the first to show how
contractual devices can be used to support cooperative play. Much of the lit-

4In particular, this implies that players do not need to agree to use the Godel code of other
contracts. They can use the Godel code unilaterally, and the implications of the contract will be
understood by the others provided they agree on the underlying language in which contracts are
written.
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erature in this area follows an idea developed by Fershtman and Judd (1987)
in which actions are delegated to an agent who is given the appropriate incen-
tives to carry out actions that might not otherwise be part of a noncooperative
equilibrium. This idea was developed by Katz (2006), who used it to prove a
folk theorem for a very specialized environment.

The idea that agents might report deviations provides the basis for the menu
theorems in common agency, like Martimort and Stole (1998), Peters (2001),
Han (2006), and Martimort and Moreira (2010). Recently Yamashita (2010)
suggested a method that can be used to extend the common agency approach
to games in which there are many agents.5

The idea that principals could learn about deviations by communicating with
agents is developed in Epstein and Peters (1999). They showed that for every
environment, there is a universal set of mechanisms for that environment such
that any set of indirect mechanisms used to model competition between princi-
pals can be embedded in that universal set. Each element of this universal set is
described by a sequence of payoffs. Since each indirect mechanism that a prin-
cipal can offer corresponds to some sequence of payoffs, agents can report the
mechanisms being used by other principals by reporting the sequences that cor-
respond to each of the other principals’ mechanisms. In this sense, the agent’s
type corresponds with his usual payoff type along with a sequence represent-
ing the mechanisms of the other principals. Every equilibrium in a competing
mechanism game can then be represented as an equilibrium in a game where
principals offer universal mechanisms and agents truthfully report both their
payoff type and their market information.

There are a couple of important differences between our paper and theirs.
First of all, our formulation makes it possible to provide a characterization of
the outcome functions that are supportable as equilibria. This is a major advan-
tage over Epstein and Peters (1999), which only provides a set of contracts that
might be used to support equilibrium. Second, players offer contracts that con-
dition directly on contracts of other players instead of asking agents to describe
these contracts. In our model, there is no communication at all between play-
ers after contracts have been announced, so there are really no agents at all.
Indeed, we illustrate that despite this limit on players’ ability to communicate,
contracts support a rich set of type contingent outcome functions. Our main
theorem shows that contracts are equivalent to a mechanism in which players
communicate their type information publicly. In the private value case, con-
tracts support all the outcome functions that can be supported by a centralized
mechanism designer, illustrating the flexibility of this approach.

However, the primary objective of Epstein and Peters (1999) and our paper
is the same—to find a language that makes it possible to describe contracts that
depend on other contracts. The essential conceptual difference is that Epstein

5See Peters and Troncoso-Valverde (2009) for a full characterization of supportable outcomes
using his method.
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and Peters (1999) created a language to describe contracts that uses sequences
of payoffs from the game to describe contracts. In this sense, the approach in
Epstein and Peters (1999) resembles the approach in Kalai et al. (2010) that
we described above, except that the contracts in Epstein and Peters (1999) are
immune to contractual innovation. So the contracts that work in one game will
not work in a new game with a different payoff structure. As we mentioned,
the contracts that we describe work for all games. The cost of our universality
is that the set of contracts we describe is countable for the finite environments
we are interested in. The universal set of contracts in Epstein and Peters (1999)
is finite in finite environments because the set of payoffs is finite.

Our approach is closely related to ideas in the computer science literature.
One paper we have already mentioned that uses this approach is Tennenholtz
(2004). He has players writing programs that determine their actions. Using an
idea due to von Neumann, he allows these programs to use other programs as
data, which has the effect of making the output of each player’s program de-
pend on the other players’ programs. We illustrated the idea with our descrip-
tion of This Contract in the introduction. Tennenholz does not give a com-
plete description of the set of feasible contracts. We explain below how our
approach differs from the assumption that players choose Turing machines to
play against one another.

The paper by Kalai et al. (2010) gives a complete characterization of equilib-
rium outcomes in two-player complete information games. They constructed
a set of (game specific) commitment devices which can be used to support
correlated strategies in which all players’ payoffs exceed their minmax payoffs.
Specifically, in some games their devices support outcomes in which all play-
ers receive payoffs that exceed their best payoffs with Tennenholz’s programs.
This is accomplished by constructing commitment devices that allow players to
correlate their actions while using independent randomizing devices. We ex-
tend part of their argument to games of incomplete information. We do not
deal with correlation or any other form of randomization simply because we
are trying to keep a notationally and technically demanding problem relatively
simple.

Finally, the problem we model is one in which privately informed players
offer contracts which will depend on their types in most Bayesian equilibria
of the contracting game. Since our interest is in contracts rather than mecha-
nism design, we do not allow players to communicate privately after agreeing
to the contract us is done in an informed principal problem Myerson (1983).
Despite this, we are able to show that contract equilibria support a rich set of
type contingent outcomes. Indeed, this is a major advantage of our approach
over the simple “cooperate or be minmaxed” approach in the computer sci-
ence literature, since contracts have to respond to other players’ contracts in a
much more sophisticated way to make it possible for one player’s action to de-
pend on another player’s type without any explicit communication. We could
not have shown this as effectively if we had allowed private communication.
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Of course, the results we have about the limits of contract equilibrium arise
from this restriction. We could support a larger class of outcome functions if
we allowed private communication.

3. THE MODEL

There are m players indexed by i ∈ {1� � � � �m}. Player i has a finite action
spaceAi, and letA denote×m

i=1Ai. Player i has a type ti drawn from a finite set
Ti, and let T denote×m

i=1 Ti. Each type profile has a strictly positive probability
and the joint distribution of types is common knowledge. The payoff of player
i is ui :A× T → R.

Each player i is endowed with a contract space Ci and let C denote×m

i=1Ci.
Each element of Ci defines a mapping from C to 2Ai \ {∅}. Let c̃i denote the
mapping induced by ci. That is, a contract of player i specifies a nonempty
subset of his action space for each contract profile. It is important to note
that we do not identify a contract with the mapping it defines. This allows for
the possibility that two different contracts induce the same mapping, that is,
c̃i(c)= c̃′

i(c) for all c ∈ C , but ci �= c′
i.

The contracting game takes place in two stages. In the first stage, each player
submits a contract from his contract space simultaneously. Let ci ∈ Ci denote
the contract submitted by player i. For each player i, consider the following
subset of Ai determined by the contract profile c = (c1� � � � � cn):

Si(c)= {ai :ai ∈ c̃i(c)}�
In the second stage, player i takes action from Si(c) simultaneously. As always,
S(c)=×i Si(c).

In what follows we restrict attention to pure strategies. A strategy, of player
i consists of a mapping from his type space to his contract space and a mapping
from his types and first-stage contract profiles to his action space. Let Γi denote
the first stage strategies of player i, that is,

Γi = {γi :γi ∈ CTi
i }�

where CTi
i denotes the set of functions with domain Ti and range Ci. Similarly

let Ai denote the set of second-stage strategies of player i, that is,

Ai = {αi :αi ∈ATi×C
i and ∀ti ∈ Ti�∀c ∈C�αi(ti� c) ∈ Si(c)}�

Let γ(t) denote (γ1(t1)� � � � � γm(tm)) and let α(t� c)= (α1(t1� c)� � � � �αm(tm� c))
for all t ∈ T and c ∈C . The strategy profile (γ∗�α∗) ∈ (×i Γi)× (×i Ai) consti-
tutes a Bayesian equilibrium if and only if for all i ∈ {1� � � � �m}, ti ∈ Ti, γi ∈ Γi,
and αi ∈ Ai,

Et−i
(
ui
(
α∗((ti� t−i)� γ∗(ti� t−i))� (ti� t−i)

)| ti)(2)

≥Et−i
(
ui
(
ᾱ((ti� t−i)� γ̄(ti� t−i))� (ti� t−i)

)| ti)�
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where ᾱ= (αi�α∗
−i) and γ̄ = (γi� γ∗

−i).
A deterministic outcome function in our model is a mapping from T to A.

We say that an outcome function s :T →A is supportable as a Bayesian equi-
librium in the contracting game if there is a Bayesian equilibrium (γ∗�α∗) such
that α∗(t�γ∗(t))= s(t) for all t.

Bayesian equilibrium imposes no restriction at all on the second-stage
actions α∗

−i(t−i� (γi� γ
∗
−i(t−i))) that player i anticipates when he deviates,

apart from α∗
−i(t−i� (γi� γ

∗
−i(t−i))) ∈ S−i(γi� γ∗

−i(t−i)). For example, α∗
j (tj� (γi�

γ∗
−i(t−i))) could be strictly dominated for player j with type tj by some other

action in Sj(γi� γ∗
−i(t−i)). For this reason, it may be that refinements of equilib-

rium are necessary in applications to rule out this kind of second-stage behav-
ior.

Refinements are completely incidental to our formalism, although they are
obviously going to make a difference to the precise set of outcome functions
that are supportable as equilibria. The less controversial refinements, like se-
quential equilibrium and perfect Bayesian equilibrium do not fit easily into
our environment since our contract spaces are not necessarily finite and player
types can be correlated. The detailed formalism we need to modify these con-
cepts takes us well beyond our main purpose in this paper. For these reasons,
we restrict attention to equilibria where players do not take strictly dominated
actions in the continuation games generated by a contract profile. In the Ap-
pendix, we provide a more abstract description that describes refinements in
a manner that is independent of the particular game that is being played (see
Section A.1).

For each t−i ∈ T−i and Ā=×m

i=1 Āi ⊂A, define Ri(Ā� t−i) as the set of action
profiles a−i ∈ A−i such that for each j �= i, aj is not strictly dominated6 for
player j when his type is tj , given that the players are constrained to choose
actions in Ā. We say that (γ∗�α∗) is an R equilibrium of the contracting game
if (2) holds, and, in addition, for every i, γi ∈ Ci, and t−i ∈ T−i,

α∗
−i(t−i� γ̄(t−i)) ∈ Ri

(
S(γ̄(t−i))� t−i

)
�(3)

where γ̄(t−i)= (γi� γ∗
−i(t−i)).

3.1. Properties of the Contract Space

Our main characterization theorem relies on two properties, which we de-
scribe formally in this section. We have already mentioned these properties:
cross-referentiality, and invariant punishment. Cross-referentiality is intended

6Here, strictly dominated means “no matter what he believes about the types of his oppo-
nents.” This is intended to be a very weak refinement. In particular, here we ignore any informa-
tion j might have learned from the contracting phase when evaluating whether or not a particular
action is strictly dominated.
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to generalize the term This Contract that we used to support cooperation in the
prisoner’s dilemma game in the introduction. The complication is that, gener-
ally, a contract has to respond to many players who have many different types.
For each such player and type, a contract needs to recognize the particular
contract for that player and the type which reciprocally recognizes the player’s
own contract.

CROSS-REFERENTIAL PROPERTY: For all (N1� � � � �Nm) ∈ Nm, Ni ≥ 1, for all
functions ri : Nm → 2Ai \{∅} , pji : Nm−1 → 2Ai \{∅} (i� j ∈ {1� � � � �m}, i �= j), there
exists a set of contracts for all i ∈ {1� � � � �m}, {cnii }ni∈{1�����Ni} ⊂ Ci, such that cnii �=
c
n′
i
i if ni �= n′

i and

c̃
ni
i (c1� � � � � cm)(4)

=
⎧⎨⎩
ri(ni� n−i)� if ∀k �= i cnkk = ck,
p
j
i(ni� n−ij)� if ∀k �= i� jcnkk = ck and �nj s.t. c

nj
j = cj,

Ai� otherwise.

Notice that the conditions on the right-hand side of (4) explicitly depend on
(cross-referential contracts) c

nj
j and, vice versa, the mapping determined by c

nj
j

explicitly depends on cnii . If each player j offers a contract c
nj
j for some nj ≤Nj ,

then cnii restricts the action space of player i to be ri(n), where n= (n1� � � � � nm).
If each player offers such a contract except player j, then cnii restricts the action
space of player i to be pji(n−j). In any other cases, cnii imposes no restrictions
on the actions of player i. Intuitively, {cnii }ni can be thought of as the set of
contracts from which player i is supposed to choose in an equilibrium. If each
player chooses from these sets, then the second-stage restrictions are defined
by the functions {ri}i. If a single player, say player j, offers a contract which is
not in {cnjj }nj , then the contracts of the other players restrict their action spaces
according to the functions {pji}i. One can think about these functions as the
contractual punishments imposed on deviators.

In the construction given above, the reaction of each player when one of the
others fails to use one of the cross-referential contracts is independent of what
contract this player actually offers. This is similar to the approach we used
in the prisoner’s dilemma problem. The next property is used to ensure that
the logic associated with fixed punishments like this will still be valid in richer
contract spaces.

This property requires, that no matter what contracts the other players are
offering, the contract space is rich enough that the remaining player is able to
write contracts that will commit him to any subset of his actions that he wants
while inducing the same commitments from his opponents in response to each
different subset. Of course, any sensible contract space will let a player commit
himself to an arbitrary subset of his actions. Yet the player must make these
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commitments by announcing different contracts. The other players’ contracts
make commitments that depend on the contract this player offers, so the other
players’ commitments will generally change as the remaining player’s commit-
ment changes. We want the contract space to be rich enough that the player
can write the contracts in such a way that the different commitments he makes
induce exactly the same commitments from his opponents.

We do not need to know what these contracts are or what commitments they
elicit from the other players. All we require is that these contracts exist so that
there is some fixed commitment a player can elicit from the others. What this
property delivers is the fact that in any equilibrium, a player must do at least as
well as he does against this fixed commitment. This ensures that all equilibrium
outcomes can be implemented with the cross referential contracts we described
above. Formally

INVARIANT PUNISHMENT PROPERTY: For all (N1� � � � �Nm) ∈ Nm, Ni ≥ 1,
for all sets of contracts {cnjj }j�nj∈{1�����Nj } (c

nj
j ∈ Cj , cn

′
j

j �= c
nj
j if n′

j �= nj), and for
every i, there are functions pik : Nm−1 → 2Ak \ {∅} (k �= i), such that for any
function fi : Nm−1 → 2Ai \ {∅}, there is a contract c∗

i ∈ Ci such that for all
n−i ∈×j �=i{1� � � � �Nj},

c̃∗
i (c

∗
i � (c

nj
j )j �=i)= fi(n−i)(5)

and for all k �= i,
c̃
nk
k (c

∗
i � (c

nj
j )j �=i)= pik(n−i)�(6)

Again, the set {cnii }ni can be thought of as the collection of those contracts
from which player i chooses, depending on his type in an equilibrium. Given
the strategies of the others, each alternative contract that he offers induces
a commitment correspondence fi(n−i) and elicits some kind of response by
the others. The Invariant Punishment Property guarantees that there must ex-
ist some collection of punishment correspondences, {pij}j �=i, such that for any
commitment correspondence fi that player i wants, he can write his own con-
tract in such a way that the others respond with exactly the same punishment
{pij}j �=i.

In Section 5, we specify a contract space which satisfies both of these prop-
erties. This space is going to be the set of definable functions. There are other
spaces which contain cross-referential objects. One such space is the set of
Turing machines which is often used in game theoretic analysis. One can even
think about the programs in Tenneholz (2004) as Turing machines: he used this
space to model contracts in a complete information environment. If we mod-
elled the contracts by Turing machines, then the input of a player’s machine
would be the descriptions of the machines submitted by the other players, and
the output would be a subset of the player’s action space.
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This space would satisfy the Cross-Referential Property, but not the Invari-
ant Punishment Property. This is because players could submit universal ma-
chines that would simulate the machine of a deviator. Once the simulation is
completed, these machines could recommend an action profile which is worse
for the deviator. This action profile can depend on the result of the simulation,
that is, on the actual deviation. This suggests that players can push the payoff
of a deviator below his minmax value. Of course, a deviator could also submit
a universal machine that simulates the machines of the others, and then best
responds to their outputs. The problem is that, in general, these universal ma-
chines will not halt on each other. Indeed, it is not clear how one can properly
define the game because of this halting problem.

4. THE CHARACTERIZATION THEOREM

There are several ways to state our characterization theorem. One of our ob-
jectives is to compare the set of equilibrium outcomes of the contracting game
to the set of outcome functions implementable by a centralized mechanism
designer who can control the actions of all the players who agree to partici-
pate in his mechanism. To help illustrate the relationship, we define a class of
mechanisms called public message mechanisms (PMM) and show that the set
of equilibrium outcomes relative to these mechanisms is identical to the set of
equilibrium outcomes in the contracting game.

The following class of two-stage mechanisms are called public message
mechanisms. In the first stage, players simultaneously decide whether or not
to participate in the mechanism. Players who participate send public messages
from a countable message space. At the same time, a player who does not par-
ticipate publicly submits a commitment device, which imposes a restriction on
his action space as a function of the messages sent by the participants.7 In the
second stage, the mechanism restricts the action spaces of the participating
players as a function of the messages of the participants. These restrictions,
however, cannot depend on the functions submitted by the nonparticipants.
Finally, players simultaneously take actions from their restricted action spaces.

Next, we define the public message mechanism formally.

DEFINITION 1: Let Ni be a countable message space for each i and let N =×m

i=1Ni. Suppose that ∅ /∈ ⋃m

i=1Ni and let N̄i =Ni ∪{∅} for each i.8 In addition,
let


i =
{
ρi : ρi ∈ (2Ai \ {∅})×m

i=1 N̄i
}
�

7A restriction is a nonempty subset of the action space.
8The symbol ∅ can be interpreted as the message of a player who does not participate in the

mechanism.
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For each ρ∗ = (ρ∗
1� � � � � ρ

∗
m), ρ

∗
i ∈ 
i, consider the following two-stage game.

In the first stage, players take actions simultaneously. The first-stage action
space of player i is Ni ∪ 
i. In the second-stage, after observing the first-stage
action profile, players take actions simultaneously. Suppose that the first-stage
action of player j is δj . Let nj = δj if δj ∈Nj and ∅ otherwise. Then the second-
stage action space of player i is ρ∗

i (n1� � � � � nm) if δi ∈ Ni and ρi(n1� � � � � nm)
if δi = ρi ∈ 
i. We call this game the public message mechanism defined by
(N�ρ∗).

The main difference between a PMM and a standard direct mechanism is
that the reports of the players are publicly observable. This has several con-
sequences. First, a nonparticipant player can learn about the types of the par-
ticipants through their messages and can make his action contingent on these
messages. As a result, nonparticipation is more profitable in a PMM than it
would be in a comparable mechanism when messages are privately conveyed
to the mechanism designer. Second, to prevent players from refusing to partic-
ipate so that they can make use of this information, the mechanism might not
induce participants to fully reveal their types in the first stage. Finally, since the
messages do not necessarily coincide with the types, the mechanism designer
might not want to specify a single action for every player in response to some
public messages. If, instead, he allows the player to choose from a subset of his
actions, then he makes it possible for the player’s action to depend on his pri-
vate information which was not revealed through his message. Furthermore,
he can exploit a nonparticipant’s uncertainty about the types of others when
implementing a punishment.

Intuitively, the relationship between a PMM and the contracting game can
be explained as follows. In a contracting equilibrium, a player with different
types offers different contracts. Since the contracts are publicly observable,
players learn about each other’s types from the contracts. The contracts’ infor-
mation content about the types corresponds to the public messages in a PMM.
An equilibrium contract profile specifies restrictions on the action spaces of
the players. These restrictions correspond to the second-stage restrictions of
a PMM if each player participates. The Invariant Punishment Property cor-
responds to the property of a PMM which says that the restrictions imposed
on participants do not depend on the commitment devices submitted by the
nonparticipants. The reader should think about a nonparticipant in a PMM as
a deviator in the contracting game and think of the commitment device of a
nonparticipant as the deviator’s contract. The Invariant Punishment Property
implies that it is without loss of generality to assume that uncooperative be-
havior by one player in the contracting game provokes a punishing contractual
response from the others that does not depend on how the deviator goes about
being uncooperative.

We restrict attention to deterministic mechanisms and pure strategies. Our
main theorem can be stated as follows.
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THEOREM 1: An outcome function is implementable as an R equilibrium in
the contracting game if and only if it is implementable as an R equilibrium by a
public message mechanism.

A simple public message mechanism is a public message mechanism in which
each player’s message space is a partition of his type space. The mechanism is
incentive compatible if each player prefers to report the partition element that
contains his true type. It is individually rational if every player, irrespective of
his type, would prefer to participate in the mechanism than unilaterally com-
mit himself to a subset of his actions that depends on the partition elements
reported by the other players. By standard arguments in mechanism design, an
outcome function can be supported as an R equilibrium in a public message
mechanism if and only if there is an incentive compatible and individually ra-
tional simple public message mechanism that implements the same outcome
function as an R equilibrium. For this reason, we restrict attention to simple
public message mechanisms which are incentive compatible and individually
rational.

Next we characterize the set of implementable outcome functions with con-
straints. Let τi :Ti → 2Ti \ {∅} be the partition from which player i must choose
his report. Let τ, τ−i, and τ−ij denote×n

i=1 τi,×j �=i τj , and×k �=i�j τk, respectively.
Let ri(t) ∈ 2Ai \ {∅} denote the restricted action space of player i if each player
participates and the message sent by player j is τj(tj). Since the restrictions can
depend only on the partition elements that each player reports, ri must be mea-
surable with respect to τ, that is, ri(t)= ri(t

′) whenever τ(t)= τ(t ′). Further-
more, let pji(t−j) ∈ 2Ai \{∅} denote the restriction on the action space of player i
if all players but player j participate and the message sent by player q is τq(tq)
for all q �= j. The function pji(t−j) is measurable with respect to τ−ij . A simple
public message mechanism is given by (τ� r�p)= ({τi}mi=1� {ri}mi=1� {pji}mi�j=1).

A public message mechanism only constrains players to subsets of their ac-
tion spaces, so we need to describe what happens at the second stage. We start
with the equilibrium path. Let si denote the strategy of player i at the second
stage if each player participates; that is, si :T →Ai, such that si(t) ∈ ri(t) for
all t, and si is measurable with respect to τ−i. Note that since player i knows
his own type, si does not have to be measurable with respect to τi. Next, we
describe the strategies of the players following a deviation. Let

Fτi = {
fi : fi ∈ (2Ai \ {∅})T−i � fi is τ−i measurable

}
�

The set Fτi is the action space of player i in the first stage if he does not par-
ticipate in the mechanism. If player i submits fi (∈ Fτi ) and player j reports
τj(tj) for j �= i, then player i’s restricted action space is fi(t−i) (⊂Ai) in the
second stage. Let sji denote the second-stage strategy of player i if all players
but player j participate; that is, sji :T−j ×Fτj →Ai such that sji (t−j� fj) ∈ pji(t−j),
and sji is measurable with respect to τ−ij .
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An outcome function s = (s1� � � � � sm) is supportable as an equilibrium in the
public message game (or alternatively, is implementable by a simple public
message mechanism) if there is a simple public message mechanism (τ� r�p)
such that the following inequalities hold. The first one guarantees that each
player sends a truthful message in the first stage of the game. For each i =
1� � � � �m and for all ti, t ′i ∈ Ti

Et−i
(
ui(s(t)� t)|ti

)
(7)

≥Et−i
(

max
ai∈ri(t′i �t−i)

Et′−i
(
ui(ai� s−i(t ′i� t

′
−i)� (ti� t

′
−i))|t ′−i ∈ τ−i(t−i)

)|ti)�
The max operator on the right-hand side implies that the player has to choose
a best reply from his restricted action space given his posterior belief. Taken
together, these constraints for all the players require that the play in the sec-
ond stage constitutes a Bayesian equilibrium of the game in which each player
chooses an action from his restricted set of actions, given posterior beliefs
about other players’ types.

To deal with deviations at the first stage of the PMM, we require that, for
each ti ∈ Ti,

Et−i
(
ui(s(t)� t)|ti

)
(8)

≥ max
fi∈Fτi

Et−i

(
max

ai∈fi(t−i)
Et′−i

(
ui(ai� s

i
−i(t

′
−i� fi)� (ti� t

′
−i)� t)|

t ′−i ∈ τ−i(t−i)
)|ti)�

This inequality says that even if the deviator chooses a best reply from the set
of actions to which he is restricted, he cannot gain by deviating.

We say that an outcome function is supported as an R equilibrium of the
public message mechanisms (alternatively, is R-implementable by a simple
public message mechanism) if (7) and (8) hold, and, in addition, for every i
and fi ∈ Fτi ,

si−i(t−i� fi) ∈ Ri(fi ×pi−i� t−i)�(9)

With this formalism, we can restate our theorem as follows:

COROLLARY 1: The outcome function s is implementable as an R equilibrium
in the contracting game if and only if there is a simple public message mechanism
(τ� r�p) for which (7), (8), and (9) hold.

4.1. The Proof of Theorem 1

PROOF OF THE “IF” PART OF THEOREM 1: Suppose that there exists a PMM
which R-implements the outcome function s = (s1� � � � � sm) :T →A. Accord-
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ing to the arguments in the previous section, this implies that for all i and j,
there exists a partition of the type space τi :Ti → 2Ti \ {∅}, on-path restriction
ri :T → 2Ai \ {∅}, off-path restrictions pji :T−j → 2Ai \ {∅}, and off-path strate-
gies sji :T−j × Fτj →Ai such that si and ri are measurable with respect to τ−i,
p
j
i and sji are measurable with respect to τ−ij , si(t) ∈ ri(t), sji (t−j� fj) ∈ pji(t−j),

and (7)–(9) are satisfied. In what follows, we construct an R equilibrium in the
contracting game which implements the outcome function s.

For each i, let Ni denote the number of elements in the partition gener-
ated by τi. Then there exists a τi-measurable surjection σi :Ti → {1� � � � �Ni}.
Define r̄i : Nm → 2Ai \ {∅} such that r̄i(σ1(t1)� � � � �σm(tm)) = ri(t1� � � � � tm) and
define p̄ji : Nm−1 → 2Ai \ {∅} such that p̄ji ((σk(tk))k �=j)= pji((tk)k �=j). This is pos-
sible because σi and ri are τi-measurable and pji is τ−ij-measurable. The Cross-
Referential Property guarantees that there exists a set of contracts for all i,
{cnii }ni∈{1�����Ni} ⊂ Ci, such that cnii �= cn′

i
i for ni �= n′

i and

c̃
ni
i (c1� � � � � cm)

=
⎧⎨⎩
r̄i(ni� n−i)� if ∀k �= i cnkk = ck,
p̄
j
i (n−j)� if ∀k �= i� j cnkk = ck and �nj s.t. c

nj
j = cj,

Ai� otherwise.

Now define ctii to be cσi(ti)i . The first-stage strategy of player i, γi :Ti → Ci, is
given by γi(ti)= c

ti
i . Since σi is τi-measurable, γi is also τi-measurable. Using

the definitions of r̄i and p̄ji , c̃
ti
i can be written as

c̃
ti
i (c1� � � � � cm)=

⎧⎨⎩
ri(ti� t−i)� if ∀k �= i ctkk = ck,
p
j
i(t−j)� if ∀k �= i� j ctkk = ck and �tj s.t. c

tj
j = cj,

Ai� otherwise.

(10)

It remains to specify the second-stage strategy of player i, αi :Ti×C →Ai for
each i. If, for all j, there is a tj ∈ Tj such that player j offered a contract γj(tj)=
c
tj
j , then αi(ti� γ(t)) = si(t). This strategy is well defined because si(ti� t−i) =
si(ti� t

′
−i) whenever αi(ti� γ(ti� t−i)) = αi(ti� γ(ti� t

′
−i)).

9 Suppose now that one
player deviated, say player j, and offered a contract cj , and player k offered ctkk
for some tk ∈ Tk for all k �= j. Define f

cj
j :T−j → 2Aj as

f
cj
j (t−j)= c̃j(cj� (ctkk )k �=j)= c̃j(cj� γ−j(t−j))�(11)

Notice that f
cj
j ∈ Fτj because γ−j is τ−j-measurable. Define αi(ti� (cj� (c

tk
k )k �=j))

to be sji (t−j� f
cj
j ). These strategies are well defined because si and γ−i are τ−i-

9This follows from σj being a surjection for each j.
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measurable, sji is τ−ij-measurable, and σj is a surjection. In addition, they are
consistent with the restrictions imposed by the contracts defined by (10), that
is, si(t) ∈ ri(t) and sji (t−j� fj) ∈ pji(t−j).

Next, we argue that the strategies described above constitute an R equi-
librium in the contracting game. First, we show that the strategies {si}mi=1 are
optimal in the second stage. The constraint (7) with ti = t ′i requires si(ti� t−i) to
be a best response of player i with type ti to the strategies of the other players.
It remains to show that players do not have an incentive to deviate at the con-
tracting stage. Suppose that player j with type tj offers a contract cj �= c

tj
j . We

consider two cases.
Case 1: There exists a t ′j ∈ Tj such that cj = ct

′
j

j . Then, by (7), this deviation is
not profitable no matter what the second-stage strategy of player j is.

Case 2: cj �= c
t′j
j for all t ′j ∈ Tj . Such a deviation induces player i (i �= j) with

type ti to take action sji (t−j� f
cj
j ), where f

cj
j is defined by (11). Hence, by (8),

such a deviation cannot be profitable.
Moreover, these strategies satisfy the constraints imposed by the refinement

concept (3). This is because

αi
(
ti� (cj� γ−j(t−j))

) = s
j
−j(t−j� f

cj
j ) ∈ Rj(f

cj
j ×pj−j� t−j)

= Rj

(
S(cj� γ−j(t−j))� t−j

)
�

where the equalities are satisfied by the definitions of αi, f
cj
j , and γ, and the

middle of the chain is just (9).
Finally, since αi(ti� γ(t))= si(t) for all i and t, these strategies indeed imple-

ment the outcome function s. Q.E.D.

PROOF OF THE “ONLY IF” PART OF THEOREM 1: Fix an R equilib-
rium in the contracting game which implements the outcome function s =
(s1� � � � � sm) :T → A. For all i and j, we construct the objects τi :Ti → 2Ti ,
ri :T → 2Ai \ {∅}, pji :T−j → 2Ai \ {∅}, and sji :T−j × Fτj such that si and ri are
measurable with respect to τ−i, p

j
i and sji are measurable with respect to τ−ij ,

and si(t) ∈ ri(t), sji (t−j� fj) ∈ pji(t−j). Then we show that (7), (8), and (9) are
satisfied.

Denote the equilibrium contract of player i with type ti by ctii . Define the
partition τ as

τi(ti)= {
t ′i ∈ Ti : ctii = ct′ii

}
�

For all i ∈ {1� � � � �m}, let

ri(t)= c̃tii (ctii � (ctjj )j �=i)�(12)
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Notice that ri is measurable with respect to τ−i by the definition of τ =×m

i=1 τi.
Let αi :Ti × C →Ai denote the second-stage strategy of player i. Observe

that

αi(ti� (c
tj
j )j) ∈ c̃tii (ctii � (ctjj )j �=i)(13)

by the rules of the contracting game. Since the contracting equilibrium imple-
ments s = (s1� � � � � sm), it follows that αi(ti� (c

tj
j )j) = si(t1� � � � � tm). Notice that

si(t) is measurable with respect to τ−i. In addition, si(t) ∈ ri(t) by (12) and (13).
We are ready to show that the triple ({τi}mi=1� {ri}mi=1� s) satisfies (7). First, con-

sider this constraint with t ′i = ti. This constraint requires αi(ti� (c
tj
j )j) to be a

best response of player i with type ti to the strategies of the other players on
the equilibrium path. Since αi was an equilibrium strategy, it has to be a best re-
sponse and hence (7) must be satisfied. Second, consider (7) with t ′i �= ti. Then
this constraint says that player i with type ti is better off offering the contract
c
ti
i than offering c

t′i
i . Indeed, the left-hand side is just his expected equilibrium

payoff and the right-hand side is the maximum payoff of player i with type ti
if he offered c

t′i
i . Since ctii was an equilibrium contract, player i is better off

offering ctii than any other contract, hence, (7) is satisfied.
It remains to construct pji and sji for all i� j (i �= j) and to show that (8) is also

satisfied. For each i, letNi denote the number of elements in the partition of Ti
generated by τi. For each i, fix a τi-measurable surjection σi :Ti → {1� � � � �Ni}.
For each fj ∈ Fτj and for all n−j ∈×k �=j{1� � � � �Nk}, define f̄j(n−j) to be fj(t−j)
if n−j = σ−j(t−j). The function f̄j is well defined because fj is τ−j-measurable
and σ−j is a τ−j-measurable surjection. For all ni ∈ {1� � � � �Ni}, define cnii to be
c
ti
i if σi(ti)= ni. The Invariant Punishment Property guarantees that there are

functions p̄jk : Nm−1 → 2Ak \ {∅} (k �= j) such that for each fj ∈ Fτj , there is a

contract c
fj
j ∈ Cj which satisfies

c̃
fj
j (c

fj
j � (c

ni
i )i �=j)= f̄j(n−j) and c̃

nk
k (c

fj
j � (c

ni
i )i �=j)= p̄jk(n−j)(14)

for all n−j ∈×i �=j{1� � � � �Ni} and k �= j. For all t−j ∈ T−j , define pjk(t−j) to be
p̄
j
k(σ−j(t−j)). Notice that pjk is τ−j-measurable. Using this notation and the

definition of f̄j , (14) can be rewritten as

c̃
fj
j (c

fj
j � (c

ti
i )i �=j)= fj(t−j) and c̃

tk
k (c

fj
j � (c

ti
i )i �=j)= pjk(t−j)

for all t−j ∈ T−j and k �= j. For each fj ∈ Fτj and k �= j, define sjk(t−j� fj) to be

αk(tk� (c
fj
j � (c

ti
i )i �=j)). The function sji is obviously measurable with respect to

τ−ij . Given these notations, (8) requires that player j cannot profitably deviate
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by offering c
fj
j . Therefore, this constraint is satisfied. Finally, since the strate-

gies in the contracting game satisfly the refinement,

s
j
−j(t−j� fj)= α−j

(
t−j� (c

fj
j � (c

tk
k )k �=j)

)
∈ Rj

(̃
c
fj
j (c

fj
j � (c

tk
k )k �=j)�

(̃
c
ti
i (c

fj
j � (c

tk
k )k �=j)

)
i �=j� t−j

)
= Rj(fj(t−j)×pj−j(t−j)� t−j)

and, hence, (9) is satisfied. Q.E.D.

5. DEFINABLE CONTRACTS

5.1. The Language and the Gödel Coding

We consider a formal language that is sufficiently rich to allow its user to
state propositions in arithmetic. (The Appendix provides a formal definition of
a first-order language; see Section A.2.) Furthermore, the set of statements in
this language is closed under the finite applications of the Boolean operations
�, ∨, and ∧. In addition, the language contains variable symbols, such as x� y ,
which enable one to express, for example, Fermat’s last theorem:

∀n�x� y� z{[(n≥ 3)∧ (x �= 0)∧ (y �= 0)∧ (z �= 0)] → (xn + yn �= zn)}�
In fact, one can also express statements in the language that involve any finite
number of free variables. For example, “x is a prime number” is a statement
in the language. The symbol x is a free variable in the statement. Another ex-
ample for a predicate that has one free variable is “x < 4.” One can substitute
any integer into x and then the predicate is either true or false. This particular
one is true if x= 0�1�2�3 and is false otherwise.

A text is a finite string of symbols. Let L be the set of all texts of the formal
language. It is well known that one can construct a one-to-one function L → N.
Let [ϕ] be the value of this function at ϕ ∈ L; call it the Gödel code of the
text ϕ�

In what follows, we define a class of functions which can be represented by
finitely many characters in our formal language.

DEFINITION 2: The function f : Nk → 2N is said to be definable if there exists
a first-order arithmetic statement φ in k + 1 free variables such that for all
a ∈ Nk, b ∈ f (a) if and only if φ(a�b) is true.

We provide a formal definition of first-order arithmetic statement in the Ap-
pendix. We illustrate the previous definition with an example.
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EXAMPLE: Consider the following function defined on N:

f (a)=
{

0� if a is an even number,
1� if a is an odd number.

We show that this function is definable by constructing the corresponding pred-
icate φ:

φ(x� y)≡ {{y = 1} ∨ {y = 0}} ∧ {∃z : 2z = y + x}�
Notice that φ indeed has two free variables. (The variable z is not free because
there is a quantifier in front of it.) The first part of φ states that y is either 1
or 0. The second part says that x+ y is divisible by 2. Clearly, f (a)= 0 if and
only if φ(a�0) is true and f (a)= 1 if and only if φ(a�1) is true.

If the statement φ defines the function f and if θ is true, then φ ∧ θ also
defines f . We make use of this observation to construct different but compu-
tationally equivalent contracts in the next section.

DEFINITION 3: Suppose that fn is a function mapping from Nk to 2N for
all n ∈ Nq. Suppose that there exists a first-order arithmetic statement φ in
q + k + 1 free variables such that for all n ∈ Nq and a ∈ Nk, b ∈ fn(a) if and
only if φ(n�a�b) is true. Then we call the expression fx a definable function
with q free variables, where x= (x1� � � � � xq) is a vector of variable symbols.

A definable function from Nk to 2N with q free variables is essentially a de-
finable function from Nk+q into 2N. Therefore, many properties of definable
functions are also properties of definable functions with free variables.

We can now describe some properties of definable functions that we need in
our proofs. We need two pieces of notation. First, recall from the introduction
that if n ∈ N, then 〈n〉 denotes the text whose Gödel code is n, that is, [〈n〉] = n.
Let g be a function from {1� � � � � q} to the set of variable symbols such that
g(i) �= g(j) if i �= j; that is (g(1)� � � � � g(q)) is a finite vector of variable symbols.
Then, for any text ϕ and (n1� � � � � nq) ∈ Nq, let ϕ(n1�����nq) denote the text where
if the symbol g(k) stands for a free variable in ϕ, then g(k) is replaced by nk
in ϕ for k = 1� � � � � q.10 For example, if g(1) = x1 and g(2)= x2, ϕ is x1 < x2,
n1 = 1 and n2 = 2, then ϕ(n1�n2), is 1< 2.11

Suppose that g(i)= xi for i= 1� � � � � q. Consider the following text in n free
variables: 〈xk〉(x1�����xq), where k≤ q. Since the Gödel coding is a bijection, 〈nk〉 is

10The text ϕ(n1�����nq) depends on g, which specifies the list of free variables that are to be re-
placed. We suppress this dependence in the notation just to make it simpler.

11Of course, it is possible that the text ϕ does not contain some of the symbols {g(1)� � � � � g(q)}.
In that case, there is no substitution for the missing symbols in ϕ(n1�����nq). For example, g(1)= x1

and g(2)= x2 and ϕ is x2 > 2, then ϕ(3�4) is 4> 2, because x1 does not appear in ϕ.
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a text for each nk ∈ N. Since ϕ(n1�����nq) is defined for all ϕ and (n1� � � � � nq) ∈ Nq,
〈nk〉(n1�����nq) is a text for all (n1� � � � � nq) ∈ Nq. The following lemma is a well
known result in mathematical logic.

LEMMA 1: Let (g(1)� � � � � g(q)) be a vector of distinct free variables and, for all
k ∈ {1� � � � � q}, let fk(n1� � � � � nq)= [〈nk〉(n1�����nq)]. Then fk is a definable function
for all k ∈ {1� � � � � q}.

This basic result is central to the construction of cross-referential contracts.
The next result is used to show that the contracts we construct to support vari-
ous kinds of equilibrium are definable.

LEMMA 2: For any set A, let χA denote the characteristic function of A.
(i) If A⊂ Nk is finite, then χA is definable.

(ii) Let A�B ⊂ Nk. If χA and χB are definable, then χA∩B, χA∪B, and χA\B
are definable.

(iii) Let A1� � � � �Am ⊂ Nk and B1� � � � �Bm+1 ⊂ N. If
⋂m

i=1Ai = {∅}, χA1� � � � �
χAm are definable and B1� � � � �Bm are finite, then the following correspondence,
f : Nk → N, is definable:

f (n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B1� if n ∈A1,
���

���

Bm� if n ∈Am,
Bm+1� otherwise.

(iv) Suppose that D1� � � � �Dk ⊂ N are finite sets, g :×k

i=1Di → 2N, and
B1� � � � �Bk+1 ⊂ N, are finite sets. For all n ∈ Nk, let ni denote the ith coordinate of
n. Then the following correspondence is definable:

f (n)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g(n)� if n ∈×k

i=1Di,
B1� if {i :ni /∈Di} = {1},
���

Bk� if {i :ni /∈Di} = {k},
Bk+1� otherwise.

We point out that all the contracts we use to construct equilibrium in the
paper are in the form of Lemma 2(iv).

See the Appendix for the proof.
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5.2. The Contract Space

With a slight abuse of notation, we refer to [ai] as the Gödel code of the
text describing action ai.12 In addition, for each Āi ⊂Ai, let [Āi] = {[ai] :ai ∈
Ai}. We define the contract space of player i, Ci, as the set of all arithmetic
statements defining functions from Nm to 2[Ai] \ {∅} in the sense of Definition 2.

For all ci ∈Ci, define the correspondence c̃i :C → 2Ai \ {∅} induced by ci as

ai ∈ c̃i(c1� � � � � cm) ⇔ ci([c1]� � � � � [cm]� [ai]) is true.(15)

That is, given the contract profile (c1� � � � � cm), player i can take action ai if and
only if the Gödel code of this action is an element of the function defined by ci
evaluated at the vector ([c1]� � � � � [cm]).

To show that the statement of Theorem 1 is valid with this contract space,
we have to show that both the Cross-Referential Property and the Invariant
Punishment Property hold.

5.2.1. The Cross-Referential Property

Let Ni ≥ 1, ri : Nm → 2Ai \ {∅}, and pji : Nm−1 → 2Ai \ {∅} for i� j ∈ {1� � � � �m},
i �= j. Let xj denote the vector (x1

j � � � � � x
Nj
j ) and let x= (x1� � � � � xm), where x

nj
j

is a variable symbol for all j and nj . For each i and ni ∈ {1� � � � �Ni}, let hnii (x)
denote [〈xnii 〉(x)] and consider the following in

∑m

i=1Ni free variables

f i�nix ([c1]� � � � � [cm])(16)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ri(ni� n−i)]� if ∀k �= i hnkk (x)= [ck] and
h
nk
k (x) �= hn′

k
k (x) if nk �= n′

k,

[pji(ni� n−ij)]� if ∀k �= i� j hnkk (x)= [ck] and hnkk (x) �= hn′
k
k (x)

if nk �= n′
k and �nj s.t. h

nj
j (x)= [cj],

[Ai]� otherwise.

We prove in the Appendix that this function is definable (see Lemma 6). Let
ϕi�ni (x� y� z) be a statement which defines the function f i�nix , where y is an
m-dimensional vector of variable symbols and z is a variable symbol. Define
ci�nix (y� z) to be ϕi�ni(x� y� z)∧ (ni + 1> ni) and let γnii denote its Gödel code.13

In addition, let γi = (γ1
i � � � � � γ

Ni
i ) and γ = (γ1� � � � � γm). Observe that the con-

12In other words, we identify an action with a text which describes it.
13Notice that ni + 1> ni is always true, and, hence, ci�nix (y� z) and ϕi�ni (x� y� z) define the same

function. Such a statement, however, makes it possible that a player with two different types offers
two different but computationally equivalent contracts.
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tract ci�niγ defines the function

f i�niγ ([c1]� � � � � [cm])

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ri(ni� n−i)]� if ∀k �= i hnkk (γ)= [ck] and
h
nk
k (γ) �= hn′

k
k (γ) if nk �= n′

k

[pji(n−j)]� if ∀k �= i� j hnkk (γ)= [ck] and hnkk (γ) �= hn′
k
k (γ)

if nk �= n′
k and �nj s.t. h

nj
j (γ)= [cj],

[Ai]� otherwise.

Recall that hnqq (x) = [〈xnqq 〉(x)] and γnqq = [cq�nqx ]. Hence hnqq (γ) = (c
q�nq
x )(γ) =

c
q�nq
γ . Therefore, the previous function can be rewritten as14

f i�niγ ([c1]� � � � � [cm])=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ri(ni� n−i)]� if ∀k �= i [ck�nkγ ] = [ck],
[pji(n−j)]� if ∀k �= i� j [ck�nkγ ] = [ck] and

�nj s.t. [cj�njγ ] = [cj],
[Ai]� otherwise.

(17)

Define cnii to be ci�niγ . Therefore, by (15),

c̃
ni
i (c1� � � � � cm)

=
⎧⎨⎩
ri(ni� n−i)� if ∀k �= i cnkk = ck,
p
j
i(n−j)� if ∀k �= i� j cnkk = ck and �nj s.t. c

nj
j = cj,

Ai� otherwise,

which is just (4). In addition, since cnii = ϕi�ni (γ� y� z)∧ (ni + 1> ni), then cnii �=
c
n′
i
i if ni �= n′

i and, hence, the Cross-Referential Property is satisfied.

5.2.2. The Invariant Punishment Property

To prove that our contract space satisfies the Invariant Punishment Property,
it is enough to prove the following lemma.

LEMMA 3: For all (N1� � � � �Nm) ∈ Nm, Ni ≥ 1, for all sets of contracts

{cnjj }j�nj∈{1�����Nj } (c
nj
j ∈ Cj , cnjj �= c

n′
j

j if nj �= n′
j), and for every i, there are functions

pik :Nm−1 → 2Ak \ {∅} (k �= i) such that for any function fi : Nm−1 → 2Ai \ {∅},
there is a contract c∗

i ∈Ci such that for all n−i ∈×j �=i{1� � � � �Nj},
c̃∗
i (c

∗
i � c

n−i
−i )= f (n−i)�(18)

14Notice that ck�nkγ �= c
k�n′

k
γ if nk �= n′

k; hence, these conditions became irrelevant in the defini-
tion of f i�niγ (see the previous footnote).
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and for all k �= i
c̃
nk
k (c

∗
i � c

n−i
−i )= pik(n−i)�(19)

where c̃j is defined by (15) for all j and cj ∈ Cj .
First, we reformulate the statement of the lemma. Let Ni denote {1� � � � �Ni}

and let N =×m

i=1 Ni. Let (2Ai)|N−i | denote the set of ×j �=i Nj-dimensional
vector of nonempty subsets of Ai. For all (An−i

i )n−i∈N−i ∈ (2Ai)|N−i |, define
S((A

n−i
i )n−i∈N−i ) as{

(A
n−i
−i )n−i∈N−i :∀n−i ∈ N−i� ∃ci s.t. c̃i(ci� c

n−i
−i )=An−i

i �

c̃
n−i
−i (ci� c

n−i
−i )=An−i

−i
}
�

(A
n−i
−i )n−i∈N−i ∈ S((An−i

i )n−i∈Nj
) implies that there exists a contract ci, available

for player i such that if he offers ci and the contract profile of the other players
is cn−i

−i � then the contract profile (ci� c
n−i
−i ) restricts the action space of player i

to be An−i
i and the action spaces of the other players to be An−i

−i . We claim the
following lemma holds.

LEMMA 4: The statement of Lemma 3 is equivalent to the following statement.
For all (N1� � � � �Nm) ∈ Nm, Ni ≥ 1, for all sets of contracts {cnjj }j�nj∈{1�����Nj } (c

nj
j ∈

Cj , c
nj
j �= cn

′
j

j if nj �= n′
j), and for every i,⋂

(A
n−i
i )n−i∈N−i

S
(
(A

n−i
i )n−i∈N−i

) �= {∅}�(20)

PROOF: Suppose first that (20) is true and that (An−i
−i )n−i∈N−i is an element

of the intersection. Define pi−i(n−i)= (pik(n−i))k �=i to be An−i
−i for all n−i. Fix a

function fi : N−i → 2Ai \ {∅} and consider S((fi(n−i))n−i∈N−i ). Then there exists
a c∗

i such that equations (18) and (19) are satisfied because (pi−i(n−i))n−i ∈
S((fi(n−i))n−i ).

Conversely, suppose that (20) is false. Then for all pi−i(n−i)= (pik(n−i))k �=i :
N−i →A−i there exists (An−i

i )n−i∈N−i ∈ (2Ai)|N−i| such that

(pi−i(n−i))n−i∈N−i /∈ S
(
(A

n−i
i )n−i∈N−i

)
.

Define fi(n−i) to be An−i
i for all n−i ∈ N−i. Then, by the definition of S, there

does not exist a contract c∗
i such that (18) and (19) are satisfied. Q.E.D.

By the previous lemma, to show Lemma 3, we only have to prove (20). We
have relegated this proof to the Appendix. Here, we sketch the proof for the
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case of two players, where N1 =N2 = 1. Let c2 denote the contract of player 2.
For all ({∅} �=) B1 ⊂A1,

S(B1)= {B2 :∃c1 s.t. c̃1(c1� c2)= B1� c̃2(c1� c2)= B2}�
We have to show that

⋂
{∅}�=B1⊂A1

S(B1) �= {∅}. Suppose that, by contradiction,⋂
B1
S(B1)= {∅}. Then for all B2 ⊂A2, there exists a ({∅} �=) B1 ⊂A1 such that

B2 /∈ S(B1). Therefore, one can construct a function, g : 2A2 \ {∅} → 2A1 \ {∅}
such that

∀B2 ⊂A2 :B2 /∈ S(g(B2)).

Let f c2 denote the function defined by c2. Define the function in one free vari-
able, fx, as

fx([c1]� [c2])= [
g
(〈
f c2

([〈x〉(x)]� [c2]
)〉)]
�

We show (see Lemma 7 in the Appendix) that since g has a finite domain, fx
is a definable function in one free variable. Let cx denote a statement which
defines fx and let γ denote its Gödel code. Notice that 〈γ〉(γ) = cγ . Hence,

fγ([c1]� [c2])= [
g
(〈
f c2([cγ]� [c2])

〉)]
�(21)

Notice that

c̃2(cγ� c2) ∈ S(̃cγ(c1� c2))

by the definition of S. Alternatively,

c̃2(cγ� c2) /∈ S
(
g(̃c2(cγ� c2))

) = S(̃cγ(cγ� c2))�

where the exclusion follows from the construction of g, and the equality follows
from (15) and (21). The previous two displayed statements contradict each
other and, hence,

⋂
B1⊂A1

S(B1) �= {∅}.

6. APPLICATIONS AND EXAMPLES

This section accomplishes two goals. First, we illustrate some properties of
the contracting equilibrium by two examples. Second, we compare the set of
outcome functions implementable by a centralized mechanism with those im-
plementable by our contracting game.

6.1. Example 1

Suppose that there are two players. The action space of player 1 is {a�b} and
the action space of player 2 is {l�m� r}. The type space of player 1 isD= {−1�1}
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and the type space of player 2 is T ×D = {3�−3} × {−1�1}. Any realization
of the type of each player is equally likely and the types of the players are
independently distributed. If the type of player 1 is d1 and the type of player 2
is (t� d2), then the payoffs to the players are defined by the matrix

l m r

a 6� t 2 + d1�2 + d2 0�0
b 0�−t 0�0 2�2

We want to show that the following outcome function can be supported as
an R equilibrium in the contracting game:

s(d1� t� d2)=
{
(a� l)� if t = 3,
(b� l)� if t = −3.

In this outcome function the action of player 1 varies with the type of
player 2. Therefore, if the players played this game without the contracting
stage, the outcome function s could not be implemented as a Bayesian equilib-
rium. Moreover, player 2 always takes action l in the outcome function s. Given
l, player 1 would like to deviate and take action a no matter what the types are.
Below we show how to construct a contract of player 2 which prevents such a
deviation.

In what follows, c denotes the equilibrium contract of player 1 and ct denotes
the equilibrium contract of player 2 if the second coordinate of his type is t.
Define the mappings determined by these contracts as

c̃(c1� c2)=
⎧⎨⎩
a� if c2 = c3,
b� if c2 = c−3,
{a�b}� otherwise,

and for t = 3�−3,

c̃t(c1� c2)=
{
l� if c1 = c,
r� otherwise,

(22)

such that c3 �= c−3. The Cross-Referential Property guarantees that these con-
tracts lie in the contract space.

Notice that these contracts refer to each other and they implement the out-
come function s. Indeed, player 1’s contract, c, prescribes taking action a if
the contract of player 2 is c3 and action b if player 2’s contract is c−3. Simi-
larly, player 2’s contracts, c3 and c−3, prescribe taking action l if the contract of
player 1 is c. We only have to show that players cannot profitably deviate.

The contracts always constrain the players to a specific action so they cannot
deviate in the second stage of the game. We only need to check deviations in
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contracts. The payoff of player 2 is maximized by the outcome function, so we
only have to show it for player 1. Any deviation of player 1 triggers action r by
player 2. The best response of player 1 to this action is b and it provides him
with a payoff of 2, which is smaller than his expected equilibrium payoff, 3.

Next, we discuss a number of features of this contract equilibrium that will
be of interest in the general model.

INFORMATION CONTENT OF THE CONTRACTS: The contracts offered by
player 2 for each of the realizations of the first coordinate of his types are dif-
ferent. In this sense, equilibrium play reveals something about player 2’s type.
In fact, it is precisely this feature that makes it possible for player 1 to take an
action on the equilibrium path that depends on player 2’s type. However, there
is a limit to this in the sense that player 1’s action can only vary with player 2’s
type to the extent that type information is revealed through the equilibrium
contract. In this example, the action of player 1 cannot depend on d2 because
d2 is not revealed through the equilibrium contracts.

The two contracts of player 2, c3 and c−3, are computationally equivalent,
that is, they determine the same actions as a function of the contract profile.
However, c3 �= c−3, and player 2 uses his contract to communicate his type
to player 1. This communication is not cheap talk because the contract ct is
also used by player 2 as a commitment to punish player 1 unless he credibly
promises to make his action contingent on t by offering c.15

Alternatively, since contracts reveal information about types, a deviating
player can make his second-stage action contingent on the types of the other
players. This limits the set of outcome functions which are implementable by
contractible contracts. We show that a centralized mechanism designer can
implement more outcome functions than our contracting game because he
can prevent a nonparticipant player from learning something about the oth-
ers’ types.

INVARIANT PUNISHMENTS: Any deviation of a player at the contracting
stage triggers a restriction on the action space of the other player. These re-
strictions can be viewed as a punishment for a deviation. Observe that our
equilibrium is supported by “punishments” that do not vary with the trans-
gression. For example, player 2 simply commits himself to choose r whenever
player 1 offers a contract that is different from his equilibrium contract. The
Invariant Punishment property implies that assuming that the contractual pun-
ishment is invariant to the deviation is without loss of generality. (Of course,
the punishment usually depends on the type of the punisher.)

We further explain the significance of this property. Since the punishment
for any contractual deviation of player 1 is the same, he can best respond to
the equilibrium contract of player 2. That is, the most profitable deviation of

15In fact, the allocation s cannot be implemented by introducing a cheap talk stage instead of
the contracting stage because player 1 would not take action b if player 2 takes action l.
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player 1 specifies a restriction which is a best response to the punishment of
player 2 given the second-stage strategies. This allows us to use a logic that is
similar to the minmax logic in games of complete information. The following
table summarizes the best responses of player 1 as a function of the restrictions
of player 2:16

Restrictions of player 2

{m} {r} {m�r}

Best response of player 1 {a} {b} {a} if d1 = 1
{b} otherwise

Expected payoff of player 1 2 2 2�5

Consider, for example, the last column of the table. The punishment of
player 2 is {m�r}. What is the best response of player 1? If d1 = 1, he can restrict
his action space to be {a}. Player 2 observes this restriction and is forced to take
his strictly dominant action m in the second stage. Similarly, player 1 can re-
strict his action space to be {b} if d1 = −1 and the best response of player 2
is r. Player 1’s expected payoff is 2�5. It is clear from the table that player 1 can
always achieve a payoff of 2 no matter what the punishment of player 2 is.

Consider now a modification of the original game such that the action profile
(a� l) generates a payoff of 3 to player 1 instead of 6, but the payoffs are the
same otherwise. In this case, our target outcome function generates a payoff
of 1�5 to player 1. This payoff is lower than 2 and hence, the outcome function
cannot be implemented as an R equilibrium in the contracting game. Next, we
argue that our outcome function could be implemented even in the modified
game if the restriction of player 2 could depend on the restriction of player 1.

Suppose now, that the restriction of player 2 can depend on the restriction
of player 1 generated by a deviation. Next, we present another table which
summarizes the most effective punishment of player 2 if the punishment can
be contingent on the restriction implied by the deviation:

Restrictions of player 1

{a} {b} {a�b}

Best punishment of player 2 {r} {m} {m�r}
Expected payoff of player 1 0 0 1�25

16It is never optimal to punish player 1 by taking action l. Therefore, we left this possibility out
of the table.
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Therefore, if the restriction of player 2 could depend on the restriction of
player 1, player 1 can only achieve a payoff of 1�25. Hence, the target outcome
function could be implemented even in the modified game.

EQUILIBRIUM REFINEMENT: The outcome functions that are supportable
as equilibria generally depend on the equilibrium refinement concept. As we
explained above, an important feature of the contract equilibrium is the restric-
tion on the action space triggered by a deviation. Since deviations are off the
equilibrium path, players never have to choose from these restricted sets of ac-
tions on the equilibrium path. Different refinement concepts impose different
restrictions on these off-equilibrium choices.

To see how refinement matters consider again the modified version of our
example and suppose that player 2 restricts his action space to {m�r} when-
ever player 1 deviates. Suppose that one is interested in every Bayesian equi-
librium. This concept does not impose any restriction on off the equilibrium
play. Hence, if player 1 restricts his action space to be {a}, player 2 can still
take action r although it is strictly dominated. Similarly, if player 1 restricts
his action space to be {b}, player 2 can take action m. In both of these cases,
the payoff of player 1 is zero. If player 1 restricts his action space to be {a�b},
then player 2 can play m if d2 = 1 and play r otherwise. This provides player 1
with an expected payoff of at most 1�25. Hence, the outcome function s can be
implemented as a Bayesian equilibrium even in the modified example.

6.2. Example 2

The next example illustrates two more properties of the contracting equi-
libria. First, we show that the informational partition is nontrivial in general.
That is, players reveal some information about their types but do not reveal
them fully. Second, we show that some outcome functions can only be imple-
mented by a contract profile that does not restrict the action space of a player
to a single action. That is, a player must still have some flexibility in choosing
his action in the last stage of the game. In this sense, contracts are generally
incomplete.

Suppose that m = 2, T1 =A1 = {−1�1}2, and A2 = {−1�1}2 × {α�β}. (The
type space of player 2 is degenerate.) If the type of player 1 is t1 = (t11 � t

2
1), the

action of player 1 is a1 = (a1
1� a

1
2), and the action of player 2 is (a1

2� a
2
2�α), then

the payoff of each player is

t11(a
1
1 + a1

2)+ t21(a2
1 + a2

2)�

If the type of player 1 is (t11 � t
2
1) and the action of player 2 is (a1

2� a
2
2�β), then

the payoff of player 2 is 5t21a
2
2 and the payoff of player 1 is 0.

Notice that if the third coordinate of the action of player 2 is α, this game
is a kind of coordination game where both players want to match the type of
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player 1 with their actions coordinatewise. If both players do so, then each
player receives a payoff of 4 conditional on player 2 taking α. The problem
is that if player 2 knows the type of player 1, he prefers to take action β and
match the second coordinate of player 1’s type with the second coordinate of
his action. This would provide him with a payoff of 5.

Consider the outcome function s1(t
1
1 � t

2
1)= (t11 � t

2
1) and s2(t

1
1 � t

2
1)= (t11 �1�α).

In this outcome function, each player matches the first coordinate of the type
of player 1 but only player 1 matches the second coordinate. This outcome
function generates an expected payoff of 3 to each player. Next, we argue
that this outcome function can be implemented by contractible contracts as
an equilibrium. To see this, consider a PMM where player 1 reports t11 at the
first stage. The mechanism imposes no restriction on the action space of the
players. In the second stage, player 1 takes action (t11 � t

2
1) and player 2 takes

action (t11 �1�α). Obviously, no player has incentive to deviate.
Notice that the information partition is described by τ1(t1) = t11 for all t1.

Observe that (s1� s2) cannot be implemented such that all the information is
revealed about player 1’s type. This is because if player 1 would fully reveal his
type, player 2 would not participate in the mechanism and would take action
(1� t21�β).

Also notice that (s1� s2) cannot be implemented by complete contracts. This
is because player 1 has to match the second coordinate of his own type with
the second coordinate of his action. Recall that he can only reveal the first
coordinate of his type. Therefore, it must be the case that r1(t11 � t

2
1) contains

both (t11 �−1) and (t11 �1).

6.3. Comparison With Centralized Mechanisms

The set of implementable outcome functions in the contracting game is fairly
large. However, as we mentioned before, contract equilibrium imposes a re-
striction on feasible outcome functions. When a player decides to deviate at
the contracting stage, he knows that he will learn something about the types
of the other players when he observes their contracts. Therefore, a deviator’s
action in the last stage of the game can depend on the information about the
types of the other players that are revealed by their contracts. This suggests that
there are outcome functions which are implementable by centralized mecha-
nisms (where the messages are private) but not by contracts.

By the standard revelation principle, a centralized mechanism asks the play-
ers to report their types privately. Then the mechanism requires each partici-
pant to take an action as a function of the reported type profile of the partici-
pants. If a player does not participate in the mechanism, he can take any action
he wants. It is without loss of generality to restrict attention to mechanism–
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equilibrium pairs where each player participates and truth-telling constitutes a
Bayesian equilibrium.17

A centralized mechanism has to specify the target outcome function s :T →
A and what actions the others take if player i does not participate, ¯s

i
−i :T−i →

A−i for each i. Then the outcome function s is implementable by a centralized
mechanism if and only if the following two sets of constraints are satisfied: for
all i ∈ {1� � � � �m} and ti� t ′i ∈ Ti,

Et−i
(
ui(s(t)� t)|ti

) ≥Et−i
(
ui(s(t

′
i� t−i)� t)|ti

)
(23)

and

Et−i
(
ui(s(t)� t)|ti

) ≥ max
ai∈Ai

Et−i
(
ui(ai� ¯s

i
−i(t−i)� t)|ti

)
�(24)

The inequality (23) is the incentive compatibility constraint that guarantees
that a participant player reports his type truthfully. The inequality (24) is the
participation constraint that guarantees that each player prefers to participate
irrespective of his type.

To show that one can implement more outcome functions with central-
ized mechanisms than with contracts, we revisit the example of the previous
subsection. Consider the outcome function s∗ = (s∗1� s

∗
2) :T → A, such that

s∗1(t
1
1 � t

2
1)= (t11 � t21) and s∗2(t

1
1 � t

2
1)= (t11 � t21 �α). Notice that this outcome function

provides each player with a payoff of 4, and it maximizes the sum of the play-
ers’ payoffs among all outcome functions. We show that this outcome function
can be implemented by a centralized mechanism but cannot be implemented
by a PMM as an R equilibrium.

To show that s∗ can be implemented by a centralized mechanism, it is enough
to construct ¯s

2
1 :T1 →A1 and ¯s

1
2 :T2 →A2 such that (23) and (24) are satisfied

for i = 1�2 with s = s∗. Define ¯s
2
1(t

1
1 � t

2
1) ≡ (1�1), that is, if player 2 does not

participate, the mechanism requires player 1 to take action (1�1). Similarly,
define ¯s

1
2 ≡ (1�1�β). Notice that s∗ maximizes the payoff of player 1 among all

outcome functions. Hence, (23) and (24) are satisfied for i= 1. Since, the type
space of player 2 is degenerate, we only have to show that player 2 prefers to
participate, that is, (24) holds for i= 2. Notice that the right-hand side of (24)
is 0 and the left-hand side is 4.

Now, we argue that s∗ cannot be implemented by a PMM. Notice that to
implement s∗, player 2 must know the type of player 1. Therefore, player 1 has
to fully reveal his type at the first stage of the mechanism. If player 2 decides
not to participate and player 1 reveals that his type is (t11 � t

2
1), player 2 can

take action (1� t21 �β) in the last stage of the mechanism. This would generate a
payoff of 5, which is larger than the payoff generated by s∗.

17Notice that the mechanism restricts the action space of the participants to singletons, that
is, participating players do not choose actions strategically at the second stage. Therefore, each
Bayesian equilibrium is also an R equilibrium.
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Next, we identify some environments where the set of outcome functions
implementable by centralized mechanisms is the same as the set of outcome
functions implementable by contracts.

ASSUMPTION 1: For all i and ti ∈ Ti, there exist āi(ti) ∈ Ai, āi−i ∈ A−i, and
Ui :T → R such that for all (ti� t−i) ∈ T , the following inequalities hold:

(i) ui(āi(ti)� a−i� t)≥Ui(t) for all a−i ∈A−i.
(ii) ui(ai� āi−i� t)≤Ui(t) for all ai ∈Ai�

Part (i) of Assumption 1 says that player i has an action for each of his types
which provides him a payoff of at least Ui(t) no matter what the action profile
of the other players is. Part (ii) says that players other than player i can take
an action profile which holds player i down to at most Ui(t), no matter what
action player i takes.

Assumption 1 is arguably a strong assumption, but is satisfied in many eco-
nomic environments. One way to interpret part (i) is that player i can choose
not to interact with the other players and take his outside option. The value
Ui(t) can be thought of as the value of the outside option. Similarly, the ac-
tion profile āi−i can be thought of as a profile of the other players which forces
player i to exit.

Consider, for example, an auction environment where a single seller is selling
a single object to many bidders. The players in this environment are the bidders
and the seller. The type of a player is his signal about the value of the object.
The action space of a bidder is the amount of transfers to the seller and the
action space of the seller is the set of players (to whom he can sell the object).
In this environment, Assumption 1 is obviously satisfied because a bidder can
choose not to pay and the seller can decide to keep the object.

PROPOSITION 1: Suppose that Assumption 1 is satisfied and the allocation
s :T →A can be implemented by a centralized mechanism. Then the allocation s
can be implemented as an R equilibrium in the contractible contracting game.

PROOF: Suppose that a centralized mechanism implements s, that is, there
exists {¯s

i
−i}i such that (23) and (24) are satisfied. Notice that by part (i) of As-

sumption 1,

max
ai∈Ai

Et−i
(
ui(ai� ¯s

i
−i(t−i)� t) : ti

) ≥Et−i (Ui(t) : ti)�

Therefore, (24) and the previous inequality imply:

Et−i
(
ui(s(t)� t) : ti

) ≥Et−i (Ui(t) : ti)�(25)

Next, we construct a PMM which implements the outcome function s. Con-
sider the following PMM defined by (s� {τi}mi=1� {ri}mi=1� {pji}mi�j=1), where τi(ti)=
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{ti}, ri(t)= {si(t)}, and pji(t−j)= {āji}. That is, the information partition is the
full information partition, the equilibrium restrictions are singletons corre-
sponding to s, and if player j does not participate, player i’s action space is
restricted to be the singleton {āji}. Since pji(t−j)= {āji}, then sji (t−j) must be āji .
We have to show that (7), (8), and (9) are satisfied. Since pji(t−j) is singleton
for all i, j, and t−j , (9) is satisfied. Since ri(t ′i� t−i) = {si(t ′i� t−i)}, (7) coincides
with (23). Since τi(ti)= {ti} and pji(t−j)= {āji}, (8) can be rewritten as

Et−i
(
ui(s(t)� t)|ti

) ≥Et−i
(

max
ai∈Ai

ui(ai� ā
i
−i� t)|ti

)
�

By parts (i) and (ii) of Assumption 1, the right-hand side of the previous in-
equality is Et−i (Ui(t)|ti). Hence, this inequality is just (25), which is indeed
satisfied. Q.E.D.

Notice that the statement of the proposition holds for any refinement. This
is because the outcome function s can be implemented by a PMM in which all
the restrictions on the action spaces of the players are singletons. That is, even
off the equilibrium path, players do not make strategic choices at the second
stage.

6.4. Complete Information Environment

In this section, we characterize the set of pure-strategy subgame perfect
Nash equilibrium (SPNE) in our model if the players do not possess private
information. We prove a pure-strategy folk theorem for this environment. That
is, we show that for each player there exists a value such that an outcome func-
tion is implementable as a SPNE if and only if the payoff of each player is
larger than his value.

Define the value for player i as

¯ui = min
a−i∈A−i

max
ai∈Ai

ui(ai� a−i)�

We refer to ¯ui as the pure minmax value of player i.

THEOREM 2: The action profile a∗ = (a∗
1� � � � � a

∗
m) ∈ A is supportable as a

pure-strategy SPNE outcome in the contracting game if and only if ui(a∗) ≥ ¯uifor each i.

PROOF: Suppose first that ui(a∗) ≥ ¯ui for all i ∈ {1� � � � �m}. We construct a
PMM which implements a∗ as a SPNE. For each j, let us fix an action aji for
player i (i �= j) such that

(a
j
1� � � � � a

j
m) ∈ arg min

a−j∈A−j
max
aj∈Aj

uj(aj� a−j)
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and let

¯aj ∈ arg maxuj(aj� a
j
−j).

For all j and i (i �= j), define ri = {a∗
i }, pji = {aji}, and sji (fj)= a

j
i for all fj ∈ Fj .

Notice that sji (fj) ∈ pji and the restriction imposed by subgame perfection is ir-
relevant because the action space of each player is restricted to a single action
followed by any deviation. By Theorem 1, to prove that these strategies con-
stitute a Nash equilibrium, we have to show that both (7) and (8) are satisfied.
Notice that since players have no private information, (7) boils down to

ui(a
∗)≥ max

ai∈ri
ui(ai� a

∗
−i)�

Since ri = {a∗
i }, this inequality is obviously satisfied. Again, since players have

no types, (8) can be rewritten as

ui(a
∗)≥ max

fi∈Fi
max
ai∈fi

ui(ai� s
i
−i(fi))= max

fi∈Fi
max
ai∈fi

ui(ai� a
i
−i)�

where the equality follows from si−i(fi)= ai−i. Notice that the right-hand side is
just ¯ui and, hence, this inequality is indeed satisfied.

Suppose now that a PMM implements a∗. Then, by Theorem 1, there exist
on-equilibrium restrictions ri ∈ 2Ai \ {∅}, off-equilibrium restrictions, pji ∈ 2Ai \
{∅}, and off-equilibrium strategies sji :Fj → Ai, s

j
i (fj) ∈ pji , such that (7) and

(8) are satisfied. Hence,

ui(a
∗)≥ max

fi∈Fi
max
ai∈fi

ui(a� s
i
−i(fi))≥ max

ai∈Ai
ui(ai� s

i
−i(Ai))≥ ¯ui�

The first inequality is just (8), the second inequality follows from setting fi =
Ai, and the third inequality follows from the definition of ¯ui. We can conclude
that (8) can only be satisfied if ui(a∗)≥ ¯ui for all i. Q.E.D.

One of the implications of Theorem 2 is that for the complete information
case, the set of outcome functions that are implementable by a centralized
mechanism designer is identical to the set of outcome functions that can be
supported by equilibrium in the contracting game. As we have shown (by exam-
ple) that the same is not generally true for games of incomplete information,
this result serves to highlight one of the uses of our characterization theorem.

7. CONCLUSION

This paper shows how the contracts on contracts approach can be extended
to environments with incomplete information. Definable contracts constitute
the largest class of arithmetic contracts which can be written as a finite text
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in a first-order language. In this sense, definable contracts embed most other
interesting classes of feasible contracts as subsets.

In contrast to the complete information case, we show that the folk theo-
rem does not generally hold in the following sense. A centralized mechanism
designer can implement outcome functions that cannot be supported as equi-
librium with contractible contracts. This limitation is not a consequence of the
set of feasible contracts, but rather of the fact that public contracts reveal infor-
mation about nondeviators’ types. The restriction to definable contracts allows
us to provide a complete characterization of equilibrium and to prove this re-
sult. One of the results we provide as a part of our main theorem illustrates the
role that punishments play in a static contracting environment.

We emphasize that this paper does not intend to do mechanism design and
that restricting attention to our two-stage game is with loss of generality. For
example, if we allow further communication after the contracting stage, the set
of implementable outcome functions becomes larger. Similarly, allowing play-
ers to offer contracts and take actions sequentially leads to a different charac-
terization theorem.

APPENDIX

A.1. Refinement

This section shows how to extend our characterization theorems to more
general equilibrium refinements. A refinement is a restriction on the strategy
rules of the different types of nondeviating players in the second stage follow-
ing a deviation by some player i in the first stage. In the main text, we only
ruled out the possibility that players choose strictly dominated actions. Strict
dominance is a notion that depends on feasible sets of actions and payoff func-
tions, but not on the game in which these are embedded. Generally, refine-
ments impose restrictions that can depend on the sets to which the players
are constrained in the second stage, the information that has been revealed by
the nondeviators’ first period contracts, and the outcome that would have pre-
vailed had there not been any deviation. Informally, the sets to which players
are constrained when choosing their second period actions are used to deter-
mine whether or not some actions are dominated for certain player types. The
information conveyed by first period play is used for refinements like perfect
Bayesian equilibrium that require the use of Bayes rule for making inferences
about nondeviating players. The original equilibrium outcome is used in re-
finements like the “intuitive criterion,” which restrict beliefs that nondeviators
can have about the deviating player based on what he might have expected to
gain by deviating.

Formally, let s :T → A denote the equilibrium outcome function, that is,
s(t)= α∗(t�γ∗(t)) for each t. Let τi be the partition of Ti generated by i’s equi-
librium strategy or, in the context of our contract game, τi(ti) = {t ′i :γ∗

i (t
′
i) =
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γ∗
i (ti)}. Let F i be a τ−i-measurable correspondence from T−i intoA represent-

ing the sets to which the players are constrained when choosing their actions
following a deviation by player i. If player i deviates to contract γi, then this
correspondence is F i(t−i)= S(γi�γ∗

−i(t−i)).
A refinement specifies for every deviator i, every F i measurable with respect

to some information partition τ−i, and every status quo outcome function s, a
nonempty set of action profiles for the nondeviators that the refinement allows
for each profile of their types. Let Ri(s�F i� τ� t−i) ∈ 2A−i \ {∅} describe this
correspondence.18 If an equilibrium has the nondeviators using strategy rules
α∗

−i(t−i� (γi� γ
∗
−i(t−i))) in response to a deviation to contract γi by player i, then

the equilibrium satisfies the refinement if

α∗
−i
(
t−i� (γi� γ∗

−i(t−i))
) ∈ Ri

(
s� S(γi�γ

∗
−i(t−i))� τ� t−i

)
for each t−i.

The properties to be built into the refinement correspondence Ri are go-
ing to depend on the particular application. For example, if types are inde-
pendently distributed, then perfect Bayesian equilibrium is well defined and
Ri(s� S(γi� γ

∗
−i(t−i))� τ� t−i) would, for each t−i, consist of all action profiles for

the nondeviators that constitute actions these types would jointly take in some
Bayesian equilibrium of the game with action spaces S(γi�γ∗

−i(t−i)) and beliefs
given by posterior beliefs conditional on nondeviators types lying in τ−i(t−i).19

In a game of complete information with equilibrium contracts (c∗
i � c

∗
−i) and

equilibrium outcome a∗, a deviation to c′ by player i supports the collection of
action profiles F i = S(c′� c∗

−i), which are just the actions to which players are
constrained in the second stage by their first period contracts. The subgame
perfection refinement of Nash equilibrium would specify Ri(s�F i) ⊂ N (F i),
where N (F i) is just the set of action profiles a−i ∈A−i for which there exists
an action ai ∈ S−i(c′� c∗

−i) such that (ai� a−i) constitutes a Nash equilibrium of
the game with action spaces S(c′� c∗

−i).
Finally, if we simply want to describe Bayesian equilibrium, then we could

do so by having Ri(s�F i� τ� t−i)=A−i. We refer to the collection of restrictions
R = {Ri}i=1�����m as a refinement.

Fix a refinement R. Let τ be the information partition induced by the equi-
librium strategies γ∗ (that is, τ(t) = {t ′ ∈ T : γ∗(t ′) = γ∗(t)}). We say that

18It is reasonable to require Ri to be measurable with respect to τ−i , but we do not need this
property for our formalism.

19Perfect Bayesian equilibrium does not have a well accepted definition when types are corre-
lated. To see why, observe that when player i deviates, nondeviators have to make some inference
about his type. The on path choices of the nondeviators reveal their types to be in some subset.
The distribution of nondeviators’ types within this subset depends on the deviating player’s type.
So either inferences about nondeviating players depend on actions of the deviator or the common
prior assumption has to be abandoned.
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(γ∗�α∗) is an R equilibrium of the contracting game if (2) holds and, in ad-
dition,

α∗
−i(t−i� ᾱ) ∈ Ri

(
α∗(·�γ∗(·))� S(γi�γ∗

−i(t−i))� τ� t−i
)

for every i and γi ∈Ci (recall the notation ᾱ= (αi�α∗
−i)).

Recall from Section 4 that an outcome function is implementable by a PMM
if and only if (7), (8), and (9) hold. Using the more general refinement de-
scribed above, we only have to modify (9) as follows. For every i, t−i ∈ T−i, and
fi ∈ Fi,

si(t−i� fi) ∈ Ri(s� fi ×pi−i� τ� t−i)�(26)

Then an outcome function is R-implementable by a public message mecha-
nism if and only if (7), (8), and (9) hold.

Finally, the statement of Theorem 1 is valid even if R denotes restrictions
imposed by a more general refinement concept. The proof is essentially iden-
tical to the one in Section 4.

A.2. Definability

Our goal here is to provide formal definitions for arithmetic statement and
arithmetic statements with free variables. We define statements for any first-
order logic and explain what is specific about number theory.

Each formal language has a set of symbols. The symbols of a first-order lan-
guage are divided into two disjoint sets: the logic symbols, and the nonlogic
symbols. The logic symbols include: (, ), ∀, ∃, ¬, =, and infinitely many vari-
able symbols x0�x1� � � � � The nonlogic symbols include function symbols and
relation symbols.

DEFINITION 4: t = 〈F�R�τ〉 is a similarity type, where F is a set of function
symbols, R is a set of relation symbols, and τ : F ∪R→ N such that τ(r) > 0 if
r ∈R.

The function τ tells how many variables the functions and the relations have.
If τ(f )= 0, then f is referred to as a constant symbol.

EXAMPLE: One of the similarity types corresponding to the Peano arith-
metics, denoted by q= 〈F�R�τ〉, is F = {0�1�+�∗}, R= {<}, τ(0)= τ(1)= 0,
τ(+) = τ(∗) = τ(<) = 2. Notice that the 0 and the 1 are considered as func-
tions with zero variables, that is, constant symbols. (We point out that the sim-
ilarity type of arithmetics can be defined without the relation <. This relation
can be then defined recursively.)
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DEFINITION 5: Let t = 〈F�R�τ〉 be a similarity type. Then the set of expres-
sions of type t, denoted by K(t), is the smallest set for which the following
statements hold:

(i) x ∈K(t) for all variable symbols.
(ii) For all f ∈ F , if τ(f )= 0, then f ∈K(t).

(iii) For all f ∈ F , if τ(f ) = n and k1� � � � �kn ∈ K(t), then f (k1� � � � �kn) ∈
K(t).

Suppose that t = q. Then the following string of symbols are expressions in
arithmetics: x, 0, 1, x+ 1, ((x+ 1) ∗ (y + 1)+ 1), and so forth.

Finally, we are ready to define the set of statements that correspond to a
similarity type.

DEFINITION 6: Let t = 〈F�R�τ〉 be a similarity type. Then the set of state-
ments of type t, denoted by F(t), is the smallest set for which the following
statements hold:

(i) If r ∈R, τ(r)= n, and k1� � � � �kn ∈K(t), then r(k1� � � � �kn) ∈ F(t).
(ii) If k1�k2 ∈K(t), then k1 = k2 ∈ F(t).

(iii) If φ�η ∈ F(t), then (φ)∨ (η) ∈ F(t), ¬(φ) ∈ F(t), and ∃x(φ) ∈ F(t).

The set of arithmetic statements is defined according to the previous defini-
tion with t = q. Then the following string of symbols are statements in arith-
metics: x= y , ¬∃x∃y (y = x+ 1), and so forth.

For each statement, one can enumerate the number of different variable
symbols appearing in the statement. A variable is called a free variable in a
statement if it does not appear right behind a quantifier. For example, the
statement ¬∃x∃y ((y = x+1)∨(z = 1)) has three variable symbols: x, y , and z.
However, both the x and the y appear behind a quantifier. Hence, the only free
variable of this statement is z.

A.3. Proofs

PROOF OF LEMMA 2: (i) Suppose that A = {n1� � � � � nq}, where ni =
(ni1� � � � � n

i
k) ∈ Nk for i= 1� � � � � q. The characteristic function of the set A can

be defined by the following statement in k+ 1 free variables:

φ(x1� � � � � xk� y)≡
(

q∨
i=1

(
k∧
j=1

(xj = nij)
)

∧ (y = 1)

)

∨
(

¬
(

q∨
i=1

(
k∧
j=1

(xj = nij)
))

∧ (y = 0)

)
.
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(ii) Suppose that ϕA defines χA and ϕB defines χB, and let x denote
(x1� � � � � xk). Then χA∩B, χA∪B, and χA�B are defined by

[ϕA(x�1)∧ϕB(x�1)∧ (y = 1)]
∨ [¬(ϕA(x�1)∧ϕB(x�1))∧ (y = 0)

]
�[

(ϕA(x�1)∨ϕB(x�1))∧ (y = 1)
]

∨ [¬(ϕA(x�1)∨ϕB(x�1))∧ (y = 0)
]
�

[ϕA(x�1)∧ϕB(x�0)∧ (y = 1)]
∨ [¬(ϕA(x�1)∧ϕB(x�0))∧ (y = 0)

]
�

respectively.
(iii) Let φAi denote a statement defining χAi for each i. Furthermore, let

Bi = {bi1� � � � � biqi}. Then the following statement obviously defines the func-
tion f :

(
m∨
i=1

(
φAi(x1� � � � � xk�1)∧

(
qi∨
l=1

(y = bil)
)))

∨
(

m∧
i=1

φAi(x1� � � � � xk�0)∧
(
qm+1∨
l=1

(
y = b(m+1)l

)))
�

(iv) Let φD define the characteristic function of D=×k

i=1Di, let φDj define
the characteristic function of Dj , and let ϕn define the characteristic function
of g(n) for n ∈D. The statements φD, φDj , and ϕn exist because of part (i) of
this lemma. Furthermore, let Ai = {n ∈ Nk : {i :ni /∈Di} = i} for i ∈ {1� � � � �k}.
The characteristic function of Ai for i ∈ {1� � � � �k} is defined by

ψi(x1� � � � � xk� z)

=
((

k∧
j=1
j �=i

φDj (xj�1)

)
∧φDi(xi�0)∧ (z = 1)

)

∨
(

¬
((

k∧
j=1
j �=i

φDj (xj�1)

)
∧φDi(xi�0)

)
∧ (z = 0)

)
�
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Finally, let ξj define the characteristic function of Bj for j = 1� � � � �k+ 1. Then
the function f is defined by the statement(

φD(x�1)∧
(∨
n∈D
(ϕn(y�1)∧ (x= n))

))
k∨
i=1

(φD(x�0)∧ψi(x�1)∧ ξi(y�1))

∨
(

¬
((
φD(x�1)∧

(∨
n∈D
(ϕn(y�1)∧ (x= n))

))
k∨
i=1

(φD(x�0)∧ψi(x�1)∧ ξi(y�1))

)
∧ ξk+1(y�1)

)
�

Q.E.D.

LEMMA 5: Let Ni ≥ 1 for all i ∈ {1� � � � �m}. Suppose that h
nj
j : N×mj Nj → 2N,

is definable and that |hnjj (q)| = 1 for all j ∈ {1� � � � �m}, nj ∈ Nj and q. Suppose
that r̄ : N → 2N \ {∅} and that p̄ji : N−j → 2N \ {∅} for each i� j ∈ {1� � � � �m} (i �=
j) such that r̄(n) and p̄ji (n−i) are finite for each n ∈ N , n−i ∈ N−i, and i. In
addition, let ({∅} �=) Āi ⊂ N be a finite set. For all (q1� � � � � qm) ∈ N×mi Ni (where
qi = (q1

i � � � � � q
Ni
i ) ∈ NNi) and l= (l1� � � � � lm) ∈ Nm, define

f i�ni (q� l)(27)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r̄(ni� n−i)� if ∀k �= i hnkk (q)= lk and

h
nk
k (q) �= hn′

k
k (q) if nk �= n′

k,

p̄
j
i (ni� n−ij)� if ∀k �= i� j hnkk (q)= lk� and hnkk (q) �= hn′

k
k (q)

if nk �= n′
k and �nj s.t. h

nj
j (q)= lj,

Āi� otherwise.

Then the function f i�ni : N×mi Ni+m → 2N is definable.

PROOF: Let Ni denote {1� � � � �Ni} and let N =×m

i=1 Ni. Let ϕnii (x� yi) de-
fine hnii , where x is an |N |-dimensional vector of variable symbols and yi is a
variable symbol. Let θnr (z� v) define the characteristic function of the set r̄(n),
let θn

p
j
i

(z� v) define the characteristic function of p̄ji , and let θAi(z� v) define the

characteristic function of Āi. The letters z and v are variable symbols.
For all n= (n1� � � � � nm) ∈ Nm, nk ∈ {1� � � � �Nk}, define

ψn(x� y)≡
∧
k �=i

(
ϕ
nk
k (x� yk)

∧
n′
k
∈{1�����Nk}
n′
k
�=nk

(¬ϕn′
k
k (x� yk)

))
�
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Notice that ψn(q� l) is true if and only if hnkk (q)= lk for all k �= i and hnkk (q) �=
h
n′
k
k (q) whenever nk �= n′

k. That is, ψn corresponds to the condition in the first
line of (27).

Similarly,

ψ
n−j
j (x� y−j)

≡
∧
k �=i�j

(
ϕ
nk
k (x� yk)

∧
n′
k
∈Nk

n′
k
�=nk

(¬ϕn′
k
k (x� yk)

)) ∧
nj∈Nj

(¬ϕnjj (x� yj))�

Notice that ψ
n−j
j (q� l−j) is true if and only if hnkk (q)= lk, hnkk (q) �= hn′

k
k (q) when-

ever nk �= n′
k for all k �= i� j, and there is no nj (∈ Nj) s.t. h

nj
j (q) = lj . That is,

ψ
n−j
j (x� y−j) corresponds to the second line of (27).
We are ready to construct a statement which defines the f i�ni :∨

n∈N

[ψn(x� y)∧ θnr (z�1)]
∨

j�n−j∈N−j

[
ψnj (x� y−j)∧ θn

p
j
i

(z�1)
]

∨
(

¬
(∨
n∈N

[ψn(x� y)∧ θnr (z�1)]
∨

j�n−j∈N−j

[
ψnj (x� y−j)∧ θn

p
j
i

(z�1)
])

∧ θAi(z�1)
)
� Q.E.D.

LEMMA 6: The function described by (16) is a definable function with |×m

i=1Ni|
free variables.

PROOF: By Definition 3, we have to show that f i�ni : N×m1 Nj × Nm→2N is de-
finable, where f i�ni (q� l) is defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ri(ni� n−i)]� if ∀k �= i hnkk (q)= lk and
h
nk
k (q) �= hn′

k
k (q) if nk �= n′

k,

[pji(ni� n−ij)]� if ∀k �= i� j hnkk (q)= lk� and hnkk (q) �= hn′
k
k (q)

if nk �= n′
k and �nj s.t. h

nj
j (q)= lj,

[Ai]� otherwise

for all l= (l1� � � � � lm) ∈ Nm, qj = (q1
j � � � � � q

Nj
j ) ∈ NNj and q= (q1� � � � � qm).

Notice that |hnkk (q)| = 1 for all q and that hnkk is definable by Lemma 1. De-
fine r̄i(ni� n−i) to be [ri(ni� n−i)] and p̄ji (ni� n−ij) to be [pji(ni� n−ij)]. Finally let
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Āi = [Ai]. Notice that r̄i(ni� n−i), p̄
j
i (ni� n−ij), and Āi are finite sets of N. Hence,

the statement of the lemma follows from Lemma 5. Q.E.D.

LEMMA 7: Suppose that g : Nk → 2B \ {∅} is a definable function where B (⊂
Nq) is finite. Let f : 2B → 2D an arbitrary function where D (⊂ Nl) is finite. Then
f ◦ g : Nk → 2D is a definable function.

PROOF: Suppose that the statement φ in k + q free variables defines the
function g. That is, φ(a1� � � � � ak�b1� � � � � bq) is true if and only if (b1� � � � � bq) ∈
g(a1� � � � � ak). First, we construct a statement ϕ in k+ q|B| free variables such
that

ϕ
(
a�b1� � � � � b|B|

)
is true ⇔ g(a)= {

b1� � � � � b|B|
}
�(28)

where bi is a q-dimensional integer vector. (Notice that we do not assume that
bi �= bj if i �= j in the previous equivalence.) To this end, let x = (x1� � � � � xk),
yi = (y1

i � � � � � y
q
i ) for all i ∈ {1� � � � � |B|}, and z = (z1� � � � � zq). Define ϕ as

ϕ
(
x� y1� � � � � y|B|

) =
[ |B|∧
i=1

φ(x� yi)

]
∧
[

�z

( |B|∧
i=1

z �= yi
)

∧φ(x� yi)
]
�

This ϕ obviously satisfies (28). Next, we construct a statement ψ in ql|B||D|
free variables such that

ψ
(
b1� � � � � b|B|� d1� � � � � d|D|

)
is true(29)

⇔ f
({
b1� � � � � b|B|

}) = {
d1� � � � � d|D|

}
�

where bi is a q-dimensional integer vector for all i and di is an l-dimensional
integer vector for all i. Suppose that Bi ⊂ B, Bi = {b1

i � � � � � b
|B|
i }, and f (Bi) =

Di = {d1
i � � � � � d

|D|
i }. Consider

ψBi
(
y1� � � � � y|B| � z1� � � � � z|D|

) =
( |B|∨
n=1

(yj = bni )
) |B|∧
n=1

( |B|∨
j=1

(yj = bni )
)

∧
( |D|∨
n=1

(zj = dni )
) |D|∧
n=1

( |D|∨
j=1

(zj = dni )
)
�

The first part in the first line says that yj ∈ {b1� � � � � b|B|} and the second part
of the first line requires that for all bni , there exists a yj such that yj = bni .
Similarly, the first part in the second line says that zj ∈ {d1� � � � � d|D|} and
the second part of the second line requires that for all dni , there exists a zj
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such that zj = dni . Obviously, ψBi(b
1� � � � � b|B|� d1� � � � � d|D|) is true if and only if

{b1� � � � � b|B|} = {b1
i � � � � � b

|B|
i } and {d1� � � � � d|D|} = {d1

i � � � � � d
|D|
i }. Let 2B \ {∅} =

{B1� � � � �Bi� � � � �B2|B|−1}. We are ready to define ψ:

ψ
(
y1� � � � � y|B|� z1� � � � � z|D|

) =
2|B|−1∨
i=1

ψBi(y1� � � � � y|B|� z1� � � � � z|D|)�

This statement ψ obviously satisfies (29).
Finally, we are ready to construct the statement ζ which defines g ◦ f .

ζ(x� z)= ∃y1� � � � � y|B|� z1� � � � � z|D|(
ϕ
(
x� y1� � � � � y|B|

)∧ψ(y1� � � � � y|B|� z1� � � � � z|D|
)

∧ (z = z1)
)
� Q.E.D.

LEMMA 8: Suppose that f : Nk → 2N is definable, g : N → 2N \ {∅} is definable,
and |g(n)| = 1 for all n. For each n ∈ N, define

h(n1� � � � � nk)= f (g(n1)�n−1)�

Then the function h : Nk → 2N is definable.

PROOF: Suppose that θ(x� y) defines f , where x = (x1� � � � � xk) is a vector
of variable symbols and y is a variable symbol. Suppose that ϕ defines g(z� v),
where both z and v are variable symbols. Then the following statement ϑ ob-
viously defines h:

ϑ(x� y)≡ θ(z�x−1� y)∧ϕ(z�x1)� Q.E.D.

LEMMA 9: Let (N1� � � � �Nm) ∈ Nm (Ni ≥ 1) and Ni = {1� � � � �Ni}. Suppose
that hn−i : N → 2N is definable for all n−i ∈ N−i. Let {∅} �= Āi ⊂ N be a finite
set. Let g = (g1� � � � � gm−1) : N−i → Nm−1 be an injection. For each l ∈ N, and
q= (q1� � � � � qm) ∈ Nm, define f (l� q) as

f (l� qi� q−i)=
{
hn−i (l)� if q−i = g(n−i),

Āi� otherwise.

Then the function f is definable.

PROOF: Let θn−i (v� y) be a statement which defines hn−i and let θAi(y� z)
denote a statement which defines the characteristic function of Āi. The letters
y , z, and v are variable symbols. Let x = (x1� � � � � xm) be a vector of variable



DEFINABLE AND CONTRACTIBLE CONTRACTS 409

symbols. Then the following statement ϑ obviously defines f :

ϑ(v�x� y)

=
∨

n−i∈N−i

(
θn−i (v� y)∧ (g(n−i)= x−i)

)
∨
(

¬
( ∨
n−i∈N−i

(
θn−i (v� y)∧ (g(n−i)= x−i)

))∧ θAi(y�1)
)
�

Q.E.D.

PROOF OF LEMMA 3: By Lemma 4, we only have to show that (20) holds
for all i ∈ {1� � � � �m} and any contract profile {cnjj }j, nj . Suppose by contradic-
tion that there exists an i ∈ {1� � � � �m} and a contract profile {cnjj }j, nj such that⋂

(A
n−i
i )n−i

S((A
n−i
i )n−i∈N−i ) = {∅}. Then, for all (An−i

−i )n−i∈N−i ∈ (2A−i )|N−i |, there

exists an (A
n−i
i )n−i∈N−i ∈ (2Ai)|N−i | such that (An−i

−i )n−i∈N−i /∈ S((An−i
i )n−i∈N−i ).

Let us fix a function f = (fn−i )n−i∈N−i : (2
A−i )|N−i | → (2Ai)|N−i | such that for all

(A
n−i
−i )n−i∈N−i ∈ (2A−i )|N−i |,

(A
n−i
−i )n−i∈N−i /∈ S

(
f
(
(A

n−i
−i )n−i∈N−i

))
�

Let f c
n−i
−i denote the function defined by cn−i

−i . Define a function with one free
variable, fx, as

fx([ci]� [c−i])(30)

=
{[
fn′−i

((〈(
f c

n−i
−i

([〈x〉(x)]� [cn−i
−i ]))〉)

n−i∈N−i

)]
� if c−i = cn

′−i
−i ,

[Ai]� otherwise.

We prove that fx is a definable function in one free variable; see Lemma 10.
Let cx be an arithmetic statement defining fx and let γ denote its Gödel code.
Then

fγ([ci]� [c−i])=
{[
fn′−i

(
(̃c
n−i
−i (cγ� c

n−i
−i ))n−i∈N−i

)]
� if c−i = cn

′−i
−i ,

[Ai]� otherwise.

Notice that

(̃c
n−i
−i (cγ� c

n−i
−i ))n−i∈N−i ∈ S

(
(̃cγ(cγ� c

ni
i ))n−i∈N−i

)
(31)

by the definition of S. Alternatively,

(̃cγ(cγ� c
n−i
−i ))n−i∈N−i =

(
fn−i

((̃
c
n′−i
−i

(
cγ� c

n′−i
−i

))
n′−i∈N−i

))
n−i∈N−i

= f
(
(̃c
n−i
−i (cγ� c

n−i
−i ))n−i∈N−i

)
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by the definition of cγ . Therefore,(
(̃c
n−i
−i (cγ� c

n−i
−i ))n−i∈N−i

)
/∈ S((̃cγ(cγ� cn−i

−i ))n−i∈N−i
)

(32)

by the definition of f . Notice that (31) and (32) contradict to each other and,
hence, (20) holds. Q.E.D.

LEMMA 10: The function defined by (30) is a definable function with one free
variable.

PROOF: By Definition 3, we have to prove that f :Nm+1 → 2N is a definable
function if

f (l� q1� � � � � qm)

=
{[
fn′−i

((〈(
f c

n−i
−i

([〈l〉(l)]� [cn−i
−i ]))〉)

n−i∈N−i

)]
� if q−i = [cn′−i

−i ],
[Ai]� otherwise

for all l ∈ N and q= (q1� � � � � qm) ∈ Nm. The function f c
n−i
−i ([〈l〉(l)]� q−i) is defin-

able (Nm → 2N) by Lemmas 1 and 8. Define hn′−i (l) for all l ∈ N as

hn′−i (l)=
[
fn′−i

((〈(
f c

n−i
−i

([〈l〉(l)]� [cn−i
−i ]))〉)

n−i∈N−i

)]
�

Then the function hn′−i is definable for all n′
−i ∈ N−i by Lemma 7. Finally, de-

fine g(n−i)= [cn−i
−i ] for all n−i ∈ N−i and apply Lemma 9 to conclude that f is

definable. Q.E.D.
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