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Abstract

Majority auction games are simultaneous sealed-bid auctions of identical objects among id
bidders who each want to win a specified fraction (more than a half) of the objects. Each
receives no benefit from winning less than the specified fraction and no additional benefi
winning more than it. Symmetric equilibria having simple, intuitive forms are shown to exist in
price, second-price and all-pay versions of such games when the number of bidders is suffi
large. This contrasts with earlier results for the two-bidder “pure chopstick” majority auction g
where the only known equilibria are more complicated.
 2003 Elsevier Inc. All rights reserved.

JEL classification: C72; D44

Keywords: Simultaneous auction; Exposure problem; Mixed strategy

1. Introduction

Offshore oil leases and licenses for use of parts of the radio-frequency spectru
two important examples of objects that have been frequently sold through simulta
auctions. A bidder in simultaneous auctions typically faces an “exposure problem”:
willingnesses to pay for each auctioned object can depend on which other objects sh
then: by bidding aggressively in the hope of obtaining a collection of objects she
prefers, she runs the risk of overpaying in the event that she wins a less desired set;
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bidding passively she lessens her chances of winning the more desired sets for wh
would have been willing to pay more.

That simultaneous auctions give rise to exposure problems is widely appreciated
Milgrom, 2000), but little is known about the structure of equilibria in games that m
them.2 In a recent contribution, Szentes and Rosenthal (2003), hereafter SR, mad
headway for a particular small class of such models; we constructed symmetric equ
for two-bidder “pure chopstick” auction games in which three identical objects are
simultaneously through sealed-bid first-price and second-price auctions.3 The preference
of the bidders are such that winning any two of the three objects generates value, wh
one is valueless by itself and three are worth no more than two. Even though the
have complete information and identical valuations, the symmetric equilibria constr
for the pure chopstick auctions (one equilibrium for each auction game) are surpri
complicated: the players randomize on a two-dimensional surface in the three-dimen
bid-vector space.

The pure chopstick constructions were also generalized in SR to games in whi
marginal value of the third object is different from zero, but there was no hint the
how to go beyond either two bidders or three objects. In this paper we explore su
extension, studying simultaneous sealed-bid auctions ofn objects withm+ 1 bidders who
all want to win a numberk (k > n/2) of the objects and receive no benefit when they
fewer thank objects and no additional benefit from winning more thank. We call these
majority auction games. The pure chopstick games correspond to the special case
n = 3, k = 2, andm = 1, with the respective payment rules. The constructions here
very different from those in SR, however; this time surprisingly uncomplicated.

While majority auction games with first-price payment rules can be used to m
simultaneous sealed-bid auctions and such games with second-price payment rule
be used to model simultaneous ascending auctions, all-pay majority auctions can p
best be thought of as models of certain kinds of electoral competitions. In an ele
college scheme, for instance, such as that governing US presidential elections, can
spend money campaigning in separate state races for electoral college votes. Each
allocated a fixed number of electors, and a candidate who wins a majority of all el
wins the election. If all states were allocated the same number of electors, if the can
who spent the most in each state always won the state’s electors, and if winning the e
were all that motivated the candidates (besides the cost) our all-pay majority auction
would be a perfect description of the game.

We begin our analysis by exhibiting a symmetric equilibrium for all the first-price c
satisfyingk = n− 1 andm> 1. In each such case, the symmetric equilibrium is gener
by a probability measure on then-dimensional bid-vector space that has a one-dimens
support. In contrast with the first-price pure-chopstick construction, these equilibria
least their supports, are quite intuitive: Each player selectsk of the objects at random an
then makes equal bids on allk, the common level of these bids being chosen accor
to a particular calculated probability distribution. The player bids zero for the rema

2 See, however, Krishna and Rosenthal (1996) and Rosenthal and Wang (1996).
3 The construction there can easily be adapted to the all-pay case as well.
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n − k objects.4 Whenn/2< k < n − 1, the situation becomes still more interesting. H
independent mixing in the way just described produces indifference for each bidde
the support of the randomized strategy, a necessary condition for equilibrium; but w
it produces an actual equilibrium depends on the size ofm. We show that ifm is sufficiently
large (relative ton andk), the mixture does generate a symmetric equilibrium, but ifm is
not sufficiently large (as in the pure-chopstick case wherem = 1), it does not. And in this
region of smaller values ofm, we do not have an alternative equilibrium construction
offer, except in the pure-chopstick case. In addition, unfortunately, our proof tech
does not permit us to solve for the minimalm as an explicit function ofn andk (except for
the casek = n− 1 where the minimalm is shown to be 2).

All of this is shown to carry over to second-price and all-pay auction rules.
only modifications needed are in the forms, but not the supports, of the random
distributions.

Notwithstanding the extreme assumptions of complete information and ide
majority-type preferences for all bidders and the restriction to sealed-bid rules, our
is able to capture some of the interesting strategic factors associated with the ex
problem and to shed some light on it by showing how equilibrium considerations ch
as the intensity of the competition changes. In the equilibria introduced here, one
always wins exactlyk objects, so the outcome is always efficient, and no bidder ever
more objects than the specified majority. But always there are other bidders wh
fewer thank objects. In the equilibrium construction of SR, by contrast, a bidder c
win either one, two, or all three objects. In other words, in the pure chopstick equil
bidders spread their bids over all the objects (with probability one) in the hopes of wi
a majority. Here they target a specific subset of the objects having the specified
guaranteeing at least that they will not win more objects than necessary.

Our new constructions suggest a surprising new role for the number of bidders
auction. While the idea is commonplace that the presence of more bidders generall
the seller through increased competition, for the pure-chopstick models two bidd
already sufficient (at the equilibria in SR) for the seller to extract all the surplus an
the bidders to earn zero expected profits. In those equilibria the bidders randomiz
a relatively large part of the bid-vector space. In the newly constructed equilibria
bidders also earn zero expected profits. But evidently when the number of bidders be
sufficiently large, the nature of the competition changes to one in which the bidders
an intuitive fashion on a minimal set that has value. Bidding in this way when there a
sufficiently many competitors presents an opportunity for a rival to exploit, and that is
of the reason why the more complicated constructions are necessary for the pure ch
auctions.5

4 Evidence for the intuitiveness of such equilibria: Most theorists whom we asked to guess the fo
a symmetric equilibrium of the first-price pure chopstick game began by suggesting randomizing in exac
way. Unfortunately, as we will see, there can be no such equilibrium in the pure chopstick model (wherem = 1).

5 These interpretive remarks implicitly assume that there are at least no symmetric equilibria other tha
constructed, which we conjecture to be so in all cases wheren/2< k < n. That there are asymmetric equilibria
addition is easy to verify, but we do not view these as realistically playable anonymous symmetric environ
See Section 5 for the asymmetric equilibria and more on interpretation.
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We begin in Section 2 with a description of the model and the general one-dimen
support construction for the first-price cases, and with some preliminary observa
Section 3 proves that the construction generates equilibria for the first-price cases
k = n − 1 andm > 1. The proof here is relatively straightforward, involving a deta
calculation whenm = 2 and an induction argument form > 2. The proof that the first
price construction works for generalk wheneverm is sufficiently large is the subjec
of Section 4. This proof is indirect and complicated, and pieces of it are relegat
Appendix A. The reason we resort to an indirect proof method whenk < n − 1 is that the
combinatorics become overwhelming when attempting to prove directly that there a
profitable deviations from the strategy profile in question. To get around the combina
we work instead with a particular transformation of the bid vectors which whenm is large
serves to push the problematic deviations to a neighborhood of the transformed sup
the strategy, where they can be more easily dealt with. Even with this trick, however
amount of detailed argument is needed. In Section 5 we show that simple modificat
the arguments in Sections 3 and 4 produce the analogous results for the second-p
all-pay cases. Section 6 contains a number of additional observations.

2. Preliminaries for the first-price cases

There arem+ 1 bidders competing in simultaneous sealed-bid first-price auctionsn
identical objects listed in some specified order (m� 1,n � 3). A pure strategy for a bidde
is an element ofRn, interpreted as an ordered list of bids. The highest of them + 1 bids
for each object wins that object at the cost of the bid. If a bidder winsq objects, his payof
is u(q) (his revenue) less the sum of his winning bids (his cost), where

u(q) =
{

0 if q < k,

k if q � k

(n/2< k < n).6 For most of the paper the tie-break rule is immaterial; we will specify
as needed.7 All bidders desire to maximize their respective expected payoffs.

Forx ∈ [0,1], define

G(x) = n− k

n
x

1
m

/(
1− k

n
x

1
m

)
.

Note thatG is continuous, strictly increasing,G(0) = 0, and G(1) = 1; so G is a
cumulative distribution function (cdf). We study through Section 4 the strategy p
under which each bidder independently selectsk of then objects at random and bidsx on

6 Settingu at k when the quota is satisfied is just a normalization that keeps all bids worthy of atte
conveniently in the unit interval.

7 For an example where the tie-break rule matters, consider the cases wherek = n. Here there is a pure-strateg
equilibrium for everym at which all bidders bid 1 on all objects if the tie-break rule always breaksn-way ties by
naming some one bidder to be the winner of all the objects. For other tie-break rules, whenk = n the existence
of equilibria can be problematic (but see Section 5 for a reference to the casek = n andm = 1, where it turns out
that there is a continuum of symmetric equilibria).
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thosek objects and zero on the remainingn − k, wherex is chosen, again independen
across bidders, according to the cdfG.8 Denote byF :Rn → R the cdf of the random
vector which is generated by one bidder bidding according to this randomization.

Lemma 1. Let m � 1, n � 3, and n/2 < k < n. If m bidders randomize independently
according to F , then the remaining bidder earns zero expected payoff at all pure strategies
in the support of F .

Proof. Without loss of generality, take a general pure strategy by the remaining bid
the support ofF to be

(x, . . . , x︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n − k

),

wherex ∈ [0,1]. The expected payoff to this strategy is the difference between exp
revenue, which isk times the probability of at leastk wins, and expected cost, which
kx times the probability that any one bid ofx wins. So expected revenue iskGm(x), and
expected cost is

kx

(
n− k

n
+ k

n
G(x)

)m

.

The difference between these two expressions is readily seen to be identically zero.9 ✷
The indifference established in Lemma 1 makes the strategy profile a candidate

an equilibrium. Example 1 shows that the rest of the equilibrium conditions need n
satisfied.

Example 1. The first-price pure chopstick game (n = 3, k = 2,m = 1).

In Example 1, independent randomizations according toF do not constitute an
equilibrium. To see this, consider a deviation of the form(1,0+,0+).10 Expected revenu
from the deviation is two times the probability that one of the 0+ bids matches up again
the opponent’s zero bid, or 4/3. Expected cost is 1. So the expected payoff from
deviation is positive.

In the next two sections we seek sufficient conditions on the parameters for indep
randomizations according toF to constitute an equilibrium.

8 In Section 5, where alternative payment rules are studied, the form of the construction is the same ex
changes in the functionG.

9 There is an implicit assumption here and elsewhere in the paper that a bid of zero by the deviator
wins when tied withm other zeroes. This turns out to have no effect on the sign of the expected payoff to a
vector that is used againstm bidders randomizing independently according toF , and so is irrelevant to the issu
of when independent randomizations according toF form an equilibrium. It does serve to make the expec
payoff function for such a vector continuous on all of[0,1]n, which will serve to simplify some of our late
arguments.

10 A bid of 0+ defeats all bids of zero and nothing else. It requires no payment when it wins. Cf. the pr
footnote.
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3. The first-price case with k = n − 1

This section is devoted mostly to the proof of

Theorem 2. When k = n − 1 and m � 2, m + 1 independent randomizations according
to F constitute an equilibrium for the first-price case.

Proof. In light of Lemma 1, it is sufficient to establish that all deviating bid vect
(i.e., those off the support ofF ) generate nonpositive expected payoffs. Any such ve
containing bids above one is weakly dominated by a vector in which those bids are re
by one, and any bid below zero can similarly be replaced by a zero. So we can restr
attention to deviation vectors from the set[0,1]n, and we shall show that these all gener
strictly negative payoffs.

Let such a vector be denotedx = (x1, x2, . . . , xn) where, without loss of generality, th
coordinates are assumed to satisfyx1 � x2 � · · · � xn. The probability that any one bidxi
wins is(

1

n
+ n − 1

n
G(xi)

)m

.

The expected cost of the deviation is therefore

n∑
i=1

(
1

n
+ n− 1

n
G(xi)

)m

,

which after substitution and some manipulation is seen to be
∑n

i=i G
m(xi).

To compute expected revenue, letx−i denote the vector which isx except that its
ith componentxi is replaced by 1. Then expected revenue fromx is (n − 1) times the
probability that the deviation wins at least(n − 1) objects, or

(n − 1)

(
n∑

i=1

Fm(x−i )− (n− 1)Fm(x)

)
.

To see this, note thatFm(x−i ) is the probability that all the deviation’s bids except possi
theith win. Summing these probabilities overi countsn tunes the event that alln bids win,
so all but one of these must be subtracted from the sum.

NextF(x) is the probability that all of the deviation’s bids defeat those of a rando
drawn opponent. For this to be the case, either the opponent’s random draw fromG is
belowxn (the deviator’s smallest bid) or it is betweenxn−1 andxn but the opponent’s zer
matches up withxn. Hence

F(x) = (n− 1)G(xn)+G(xn−1)

n
.

The F(x−i ) are computed similarly, and, substituting and canceling, expected rev
becomes
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(n − 1)

{(
(n − 1)G(xn)+G(xn−2)

n

)m

+
(
(n− 1)G(xn−1) +G(xn−2)

n

)m

−
(
(n − 1)G(xn)+G(xn−1)

n

)m}
.

As expected, revenue is seen above to depend only on the deviation’s lowest thr
and expected cost is increasing in all its bids, we can restrict our search for dev
generating nonnegative expected payoffs to those in which the highestn − 3 bids are as
low as possible; i.e., wherex1 = · · · = xn−2.

We proceed by induction onm. First, for the casem = 2, expected revenue becomes

n − 1

n

{(
(n− 1)2 − 1

)
G2(xn−1)+ 2G2(xn−2) + 2(n− 1)G(xn)G(xn−2)

+ 2(n− 1)G(xn−1)G(xn−2)− 2(n− 1)G(xn)G(xn−1)
}
.

Since(G(xn−2)−G(xn−1)−G(xn))
2 � 0,(

G2(xn−2)+G2(xn−1) +G2(xn)
)

� 2
(−G(xn)G(xn−1)+G(xn)G(xn−1)+G(xn−1)G(xn−2)

)
,

with equality only ifG(xn−2) = G(xn−1)+G(xn). So expected revenue is no larger th

n − 1

n2

((
(n− 1)2 − 1

)
G2(xn−1)+ 2G2(xn−2)

+ (n− 1)
(
G2(xn−2) +G2(xn−1)+G2(xn)

))
= n − 1

n2

(
(n − 1)G2(xn)+ (

(n − 1)2 + n− 2
)
G2(xn−1 + (n + 1)G2(xn−2)

)
,

with equality only ifG(xn−2) = G(xn−1) + G(xn). But sincexn−1 � xn−2, this is in turn
no greater than

G2(xn)+G2(xn−1)+ (n − 2)G2(xn−2),

with equality only ifxn = 0 andxn−1 = xn−2. And this is in turn no greater than expect
cost, with equality only ifxn = 0 andxn−1 = xn−2 (= xn−3 = · · · = x1). In short, all
deviations in[0,1]n generate strictly negative expected payoffs whenm = 2.

Assume now that the theorem is true form − 1, and consider the expected payoffπ

from a deviation vectorx for the parameterm. Let x̃ denote the value ofx1, . . . , xn−2. We
shall make use of the following:

∂π

∂G(x̃)
= (n − 1)m

{(
(n − 1)G(xn)+G(x̃)

n

)m−1 1

n

+
(
(n − 1)G(xn−1)+G(x̃)

n

)m−1 1

n

}
−m(n− 2)Gm−1(x̃),

∂π

∂G(xn−1)
= (n− 1)m

{(
(n− 1)G(xn−1)+G(x̃)

n

)m−1
n− 1

n

−
(
(n− 1)G(xn)+G(xn−1)

)m−1 1
}

−mGm−1(xn−1),

n n
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∂π

∂G(xn)
= (n− 1)m

{(
(n− 1)G(xn)+G(x̃)

n

)m−1
n− 1

n

−
(
(n− 1)G(xn)+G(xn−1)

n

)m−1
n − 1

n

}
−mGm−1(xn).

(Keep in mind that these are only one-sided derivatives along boundaries of t
{(x̃, xn−1, xn): 1 � x̃ � xn−1 � xn � 0}.)

By payoff continuity, there is a best deviation from this compact set, with the hig
n − 2 coordinates set equal tõx. We subdivide the possibilities for best deviation into t
cases:

(i) x̃ = xn−1. In this case the best accompanyingxn is 0, and the vectorx is in the suppor
of F . If xn > 0, the expected payoff is clearly negative.

(ii) x̃ > xn−1. In this case, it must be thatxn > 0; for otherwise it would have to be eith
the case that∂π/∂G(xn) � 0 atxn = 0 if xn−1 > 0, which is clearly impossible in th
expression for∂π/∂G(xn) above wheñx > xn−1, or ∂π/∂G(xn−1)+ ∂π/∂G(xn) � 0
if xn−1 = xn = 0, which is similarly impossible. But ifxn > 0, it must be tha
∂π/∂G(x̃) � 0, since otherwisẽx could be profitably decreased, and it must be
∂π/∂G(xn−1) = ∂π/∂G(xn) = 0 if xn−1 > xn and∂π/∂G(xn−1)+∂π/∂G(xn) = 0 if
xn−1 = xn. Either of these implies that the sum of the three partial derivatives mu
nonnegative. But adding up the three algebraic expressions for the partial deriv
above yieldsm times the expected payoff for that same deviation vectorx when the
parameter ism− 1, and this is negative by the induction hypothesis.

Hence all deviations from[0,1]n generate negative payoffs for allm � 2. ✷
Theorem 2 establishes that whenk = n−1, three bidders are sufficient for the existen

of a symmetric equilibrium generated byF . For generalk, however, three bidders are n
enough.

Example 2. n = 13,k = 7, andm = 2.

In Example 2, independent randomizations according toF do not form an equilibrium
To see this, consider a deviation consisting of 6 bids of one and 7 bids of 0+. The expected
cost of this deviation is 6. The expected revenue is 7 times the probability that a
one of the 0+ bids matches up against two zeroes. But this probability is one minu
probability that none do. The event that none match up against two zeroes can in
decomposed into the disjoint events where exactlyj of a particular bidder’s nonzero bid
match against the deviator’s 0+ bids forj = 1, . . . ,7 and the remaining(7−j) are covered
by the second bidder. The probability of this is(7

j

)( 6
7−j

)(13−(7−j)
j

)
(13)(13)
7 7
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when j ∈ {1, . . . ,6}, and it is
(13

7

)−1
when j = 7. Summing the seven terms yiel

approximately 0.1293, so the expected revenue from the deviation is approxim
7(0.8707)> 6, and the deviation is profitable.

The profitable deviations described for Examples 1 and 2 are of a very simple
Working with more general deviations is more difficult. That is why we do not know
what(n, k)-combinations beyond those covered in Theorem 2 independent randomiz
according toF form an equilibrium whenm = 2. As we will see next, however, they all d
when the number of bidders is sufficiently large.

4. The first-price case with large m

This section is devoted entirely to a proof of

Theorem 3. For fixed n and k (n/2< k < n), if m is sufficiently large, m+ 1 independent
randomizations according to F constitute an equilibrium for the first-price case.

The plan of our proof is to analyze a related gameΓ among the samem + 1 players
in which the pure strategy space for each player is[0,1]n and the revenue part of eac
player’s payoff is againk if at leastk of a player’s coordinate choices are highest amon
players’ strategy vectors, and 0 otherwise. The cost part of each player’s payoff inΓ from
the pure-strategy vectory = (y1, . . . , yn) is simply

∑
i y

m
i , independently of the others

strategies. SinceG is strictly monotone, if we identify eachyi with G(xi) in the original
game, the individual player’s mixed strategy in question in the original game corres
in Γ to making a uniform-[0,1] draw and placing its realization ink (randomly chosen
out of then coordinates of the strategy vector with the remainingn − k coordinates
set to 0. Call the cdf of this strategyE. Now it is easy to see thatx = (x1, . . . , xn) is
a profitable deviation from independent randomizations according toF in the original
game if and only if(y1, . . . , yn) = (G(x1), . . . ,G(xn)) is a profitable deviation from
independent randomizations according toE in Γ : expected revenues are identical acr
the games (from monotonicity ofG) and the deviator’s expected cost inΓ is

∑
i G

m(xi),
which is the same as the expected cost ofx when all others play the strategy in question
the old game, as in the proofs of Lemma 1 and Theorem 2.11

So the plan of our proof is to rule out the possibility of positive payoffs accruin
deviations inΓ wheneverm is sufficiently large. Of course the support ofE in Γ is the
same as the support ofF in the original game and does not depend onm, and it is easy to se
that the payoff inΓ to any vector in this support againstm independent selections fromE
is zero. But, sinceG depends onm, asm changes eachy corresponds to a differentx, and
this complicates the argument.

There are three main steps in the proof. We will first show (Proposition 6) that be
the expected payoff to a deviation inΓ happens to be a homogeneous function of degrem,

11 The alert reader will realize that the proof of Theorem 2 could be expressed equivalently in terms ofΓ andE
as well. It appears not to make the argument there any simpler, however.
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if there is a profitable deviation inΓ then there is also a profitable deviation in which
highest coordinate is one. We may therefore limit ourselves to the consideration o
deviations. The second step is to show (Proposition 7) that any such deviation vey
earns a strictly negative expected payoff inΓ wheneverm is sufficiently large. This is eas
to prove (although its analogue would be quite difficult in the original game). It leav
well short of our goal, however, because it does not provide anm that works uniformly for
all suchy. The problematic deviations turn out to be those near the top point of the su
accordingly, the (complicated) third step of our argument (Proposition 10) is to show
for some neighborhood of the top point of the support there is anM sufficiently large such
that all deviations in the neighborhood are unprofitable wheneverm � M. Theorem 3 then
follows from a compactness argument.

We prepare for the chain of arguments with two lemmas about payoffs in the two g
that will prove useful at several places in the development.

Lemma 4. If x ∈ [0,1]n satisfies x1 � x2 � · · · � xn and yj = G(xj ) for j = 1, . . . , n, then

E(y) = F(x) =
∑n

j=k

(
j−1
j−k

)
G(xj )(

n
n−k

) =
∑n

j=k

(
j−1
j−k

)
yj(

n
n−k

) .

For proof, see Appendix A.
Note that since12

n∑
j=k

(
j − 1

j − k

)
=
(

n

n − k

)
,

F (x) is a convex combination of the smallestn − k + 1 coordinates ofy. Note also tha
G(xk), the largest of these smallest coordinates, has the smallest coefficient,

(
n

n−k

)−1.

Lemma 5. For x ∈ [0,1]n, let Sj (x) denote the set of subsets of {x1, . . . , xn} that have
cardinality j , j = 1, . . . , n. Then the revenue from the deviation x ∈ [0,1]n in the original
game (respectively y = (G(x1), . . . ,G(xn)) in Γ ) is

k

n∑
j=k

cjDj ,

where each cj is a scalar independent of x, ck = 1, and

Dj =
∑

{z1,...,zj }∈Sj (x)
Fm(z1, . . . , zj ,1, . . . ,1)

=
∑

{z1,...,zj }∈Sj (y)
Em(z1, . . . , zj ,1, . . . ,1).

12 A proof of this is given implicitly in the proof of Lemma 4.
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For proof, see Appendix A.
One immediate consequence of Lemma 5 is that if 2k − 1> n (i.e., if a super-majority

is needed for a positive revenue), the highest 2k − 1 − n bids in x do not affect revenue
Since they do affect cost, we conclude immediately

Corollary. The deviation x (respectively y) cannot be maximal payoff in the original game
(respectively Γ ) unless its 2k − n highest bids are equal.

Lemma 5 will also be used to establish two additional results. First, since
Lemma 4)F and thereforeFm depend only on then − k + 1 smallest elements o
{G(x1), . . . ,G(xn)} = {y1, . . . , yn} and sincej � k � n − k + 1, eachDj is a polynomial
in the coordinates ofy each term of which has degreem. Second, ify consists ofk large
coordinates andn − k small coordinates (one of the problematic deviations inΓ ), then in
the revenue expression of Lemma 5 onlyDk contains a term in which the small coordina
play no role. It iskEm(y1, . . . , yk,1, . . . ,1), which is a polynomial by Lemma 4.

We now proceed to the first step of the proof of Theorem 3.

Proposition 6. If there is a profitable deviation in Γ , then there is also a profitable
deviation in {1} × [0,1]n−1.

Proof. First, recall that the expected cost of the deviationy in Γ is
∑

i y
m
i . Next according

to Lemma 5, the revenue that accrues toy, which is the same as the revenue that acc
to the vector of inverse transforms of the coordinates ofy in the original game, is
a linear combination ofmth powers of terms that are themselves by Lemma 4 co
combinations of coordinates ofy. So both the revenue and cost accruing to the deviatiy
are polynomials in the coordinates ofy in which all terms have degreem. This implies that
the payoff to the deviationy, considered as a function of itsn arguments, is homogeneo
of degreem. Hence rescaling the vector so that its largest coordinate is 1 does not al
sign of the expected payoff.✷

The second step is now easy.

Proposition 7. Suppose y = (y1, . . . , yn) ∈ {1} × [0,1]n−1 and y2 � y3 � · · · � yn. If y is
not in the support of F , then there exists M such that whenever m � M , the deviation y
has negative payoff in Γ when there are m+ 1 players.

Proof. If y1 = y2 = · · · = yk = 1, then revenue isk and the deviation earns negati
expected payoff wheneveryk+1 > 0. Suppose then thatyk < 1. The probability that it
is highest among the selections it matches up against is(

n − k

n
+ k

n
yk

)m

which goes to zero asm gets large. Similarly foryk+1, . . . , yn. Hence expected revenu
goes to zero because the probability of at leastk wins goes to zero. On the other han
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expected cost is at least one becausey1 = 1; so expected payoff is negative form
sufficiently large. ✷

If the proof of Proposition 7 looks suspiciously easy, it is because it is actually a
weak result. Fixingyk < 1 and lettingm get large is equivalent to considering a seque
of bid vectors in the original game that haven − k + 1 coordinates becoming vanishing
small and hence have vanishingly small probability of producing revenue. On the
hand, sincey1 = 1, expected cost is bounded below by one. The proof of Proposition
easy because the deviations it rules out are uninteresting ones. The proof suggests, h
that if a uniformM is to be found the crucial deviations inΓ will be those for whichyk is
near 1.

We need two more lemmas to prepare for the third step in the proof of Theorem 3

Lemma 8. Suppose 1> λ1 � λ2 � · · · � λp > 0 and
∑p

j=1λj = 1. Then

p

j∑
l=1

λl � j ∀j ∈ {1, . . . , p}.

For proof, see Appendix A.
Lemma 8 is only needed for the proof of

Lemma 9.

(n− k + 1)
∑j−1

l=0

(
n−1−l
n−k−l

)(
n

n−k

) � j ∀j ∈ {0, . . . , n− k + 1}.

For proof, see Appendix A.
We are finally ready for

Proposition 10. There exist M and ε > 0 such that if there are more than M bidders, then
all deviations y in Γ with y1 = 1 in the ε-neighborhood of

(1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n − k

)

generate negative payoffs.

Proof. Consider a deviationy with 1 = y1 � y2 � · · · � yn � 0, whereyk+1 < ε̄ ∈ (0,1)
and for some 1� j∗ < k, yk = yk−1 = · · · = yk−j∗+1 = w < 1. (j∗ is just the number o
bids at the levelyk = w.) For anyε > 0, up to permutations of the coordinates, all bids
theε-neighborhoodof the top point of the support have the form ofy, whereε̄ is sufficiently
small andw is sufficiently close to 1. We will show that if the number of bidders exce
some uniform bound, the expected payoff from the deviationy increases strictly withw,
and hence must be negative (since by continuing to increase bids tied with thekth highest,
we come eventually to the situation where the highestk bids are all 1, which must produc
a nonpositive payoff).
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First, from the corollary we know that expected payoff can be increased unless t
2k − n bids are equal. But if they are equal andj∗ � n − k + 1, then the topk bids are
already all 1’s and we are done. Consequently, we restrict attention from now on
case 1� j∗ < n − k + 1.

Clearly

∂cost

∂w
= j∗mwm−1.

For revenue, note from Lemma 5 and the discussion following it that

Revenue= k
(
Em(y1, . . . , yk,1, . . . ,1)+Q(y)

)
,

where the terms that make upQ are all functions of at least one of the smally coordinates
Now from Lemma 4,

k
∂

∂w

(
Em(y1, . . . , yk,1, . . . ,1)

)= m
k
∑j∗−1

l=0

(
n−1−l
n−k−l

)(
n

n−k

) Em−1(y1, . . . , yk,1, . . . ,1).

Define

α ≡ min
j∈{1,...,n−k+1}

(
(n− k + 1)

∑j−1
l=0

(
n−1−l
n−k−l

)(
n

n−k

) − j

)
,

which is nonnegative by Lemma 9. It follows that

k
∑j∗−1

l=0

(
n−1−l
n−k−l

)(
n

n−k

) � j∗ + α for j∗ < n− k + 1,

sincek � n − k + 1. Furthermore,E(y1, . . . , yk,1, . . . ,1) � w since it is an average o
numbers with that property; so

k
∂

∂w

(
Em(y1, . . . , yk,1, . . . ,1)

)
� (j∗ + α)mwm−1.

Next define

c ≡ 1(
n

n−k

) ε̄ +
(

1− 1(
n

n−k

)).
Think of c as a convex combination ofε̄ and the number 1. Observe, again from Lemma
and 5, thatQ(y) is a linear combination of expressions each of which is no larger thancm.
This is because forj > k at least one small bid brings eachE calculation belowc and
therefore eachEm below cm. Furthermore, the coefficients in the linear combinat
depend neither ony nor on m. Therefore|∂Q(y)/∂w| is bounded above bymcm−1

times some constantd that is independent ofy andm. Combining this with the previou
inequality, we get

∂revenue

∂w
� (j∗ + α)mwm−1 − dmcm−1.

In light of the formula above for∂cost/∂w, it is enough to show that

αmwm−1 > dmcm−1.
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But if w ∈ (c,1], this is true for large enoughm and stays true asw increases. Therefore
under the hypotheses of Proposition 10 there existsM such that for allm � M expected
payoffs increase withw until the highestk bids are all 1, and this deviation vector inΓ has
nonpositive expected payoff.✷

To conclude the proof of Theorem 3, letA(m) be the set of vectorsy ∈ {1} × [0,1]n−1

that earn negative payoffs whenΓ has at leastm players. By continuity of the payo
function, eachA(m) is open; and by Proposition 7,

⋃∞
m=1A(m) is {1} × [0,1]n−1

except for the vectors in the support ofF . But Proposition 10 identifies an open set
{1} × [0,1]n−1, call it B, which contains that support and all of the elements of wh
earn nonpositive profits. So{B,A(1),A(2), . . .} is an open covering of the compact s
{1} × [0,1]n−1. The existence of a finite subcover (from compactness) means that th
a finite boundM ′ such that wheneverm � M ′ all deviations inΓ and hence all deviation
in the original game generate nonpositive payoffs whenever the game has at leastm players.

5. The second-price and all-pay cases

In the previous section we argued that independent randomizations according
cdf F constitute an equilibrium in the first-price majority auction game if and o
if independent randomizations according toE constitute an equilibrium ofΓ . In this
section we will show that certain modifications ofE generate symmetric equilibria of th
second-price and all-pay majority auction games, respectively, exactly whenE generates
a symmetric equilibrium ofΓ ; in particular, according to our earlier results, whenm � 2
andk = n−1, and whenm is sufficiently large. In both cases, the model is the same as
of Section 2 except for the obvious changes in the payment rule. (In the second-pric
the highest bidder for each object wins it and pays the second highest bid. In the a
case, the highest bid wins each object, but all bidders pay their bids.)

5.1. The second-price case

In Γ the strategyE calls for a uniform drawZ from [0,1] to be attached tok of then

coordinates selected randomly. Suppose instead that in the second-price majority
game each player acts independently according toE except that the bidb(Z) instead ofZ
is attached to thosek coordinates, where

b(z)= n

k

(
z

/(
n − k

n
+ k

n
z

))m−1

.

Call the cdf associated with this strategyE′ in the second-price majority auction game.
Since db(z)/dz > 0 on [0,1], b is strictly increasing, so the expected revenue accr

to any bid vector(z1, . . . , zn) used againstm independent randomizations according
E′ is the same as the expected revenue accruing to(b−1(z1), . . . , b

−1(zn)) againstm



292 B. Szentes, R.W. Rosenthal / Games and Economic Behavior 45 (2003) 278–295

t
ame

ize

uing to
t
ctor

tric
le (cf.
s exist
e 1
independent randomization according toE in Γ . The expected cost of biddingzi in the
second-price auction is

zi∫
0

b(s)dQ(s), whereQ(z) = (n− k

n
+ k

n
z

)m

.

We need only show that this integral equalszmi to establish that(m + 1) independen
draws fromE′ constitute an equilibrium of the second-price majority auction g
whenever(m + 1) independent draws fromE constitute an equilibrium ofΓ , since
(b−1(z1), . . . , b

−1(zn)) is then a profitable deviation inΓ againstE whenever(z1, . . . , zn)

is a profitable deviation againstE′. But

dQ(z)

dz
= mk

n

(
n− k

n
+ k

n
z

)m−1

,

so

dzmi
dQ(zi)

= dzmi
dzi

dzi
dQ(zi)

= n

k

(
zi

/(
n− k

n
+ k

n
zi

))m−1

,

and so by the Fundamental Theorem of Calculus

zi∫
0

b(s)dQ(s)= zmi .

5.2. The all-pay case

The modification ofE that works for the all-pay majority auction game is to random
by making a uniform drawZ as in E but to bid Zm on the k randomly selected
objects. As above, the revenue accruing to the vector(z1, . . . , zn) againstm such
randomizations drawn independently in the all-pay game is the same as that accr
((z1)

1/m, . . . , (zn)
1/m) againstm independent draws fromE in Γ . But the expected cos

of ((z1)
1/m, . . . , (zn)

1/m) in Γ is
∑

i zi , the same as the expected cost of the bid ve
(z1, . . . , zn) in the all-pay majority auction game.

6. Additional remarks

6.1. For some parameter combinations we are still in the dark: Except for the casen = 3,
k = 2, we have no equilibrium constructions whenm = 1, and asn andk get larger we have
no equilibrium constructions for smallm that are larger than 1. Existence of symme
equilibrium for any of these cases is not in doubt, at least for some tie-break ru
Simon and Zame, 1990), and we suspect that atomless symmetric equilibria alway
for all tie-break rules and for allm, but these are likely even more complicated than th
in SR.
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6.2. For the casesn = 3, k = 2, we know that whenm = 1, there are the symmetr
equilibria constructed in SR and whenm > 1, there are the symmetric equilibr
constructed here. We know of no other symmetric equilibria for these para
combinations and suspect that there are none. There are asymmetric equilibria
payment rules however whenm > 1, and at least some of these are easily described
some numberm′ < m of the bidders at the zero vector inRn and have the remainin
m+ 1−m′ bidders play the symmetric equilibrium of them+ 1−m′ bidder game. Note
that all bidders earn zero profits at this asymmetric profile. Whenm′ = m−1 it was verified
in SR that the strategy profile forms an equilibrium. For smaller positivem′’s, it suffices
to check that none of the zero bidders gains by deviating. If one of them deviates to
vector on the support of the randomizers, it is easily checked by direct calculatio
the payoff is negative, as it is less than the payoff to such a deviation at the equili
of the game withm + 1 − m′ bidders. If one of them deviates to an off-support vecto
similar argument must be made, essentially mimicking the order of the steps in the
of Theorem 2. For other combinations ofn andk—we suspect, but have not checked
asymmetric equilibria can be constructed similarly, at least when the reduced-playe
is known to have a zero-profit symmetric equilibrium.

6.3. Except briefly in a footnote, we have so far not mentioned the cases withk = n.
These cases correspond to games that have a very different structure than the game
in this paper. With the right tie-break rule, as mentioned, they have pure-strategy Be
type equilibria. More interesting, however, is that even though the exposure pro
is avoided if all bidders randomize over equal-bid supports, such randomizations
generate symmetric equilibria. This is easy to see: For the first-price case, for instan
bottom point of such a support would (unless it were an atom, which would be impo
in equilibrium) generate zero expected payoff with probability 1, but intermediate p
would generate positive expected payoffs, as they either win all (with positive proba
or none of the objects. And a necessary condition for equilibrium is equal expected p
for a player at all points of the support. So it is the existence of an exposure pro
whenk < n, even when all bidders randomize in the pattern of the equilibria of this p
that renders such structures capable of generating equilibria, which they do whem is
sufficiently large.

In related work, Szentes (forthcoming) constructs a continuum of atomless, zero-p
symmetric equilibria for the cases wherek = n andm = 1 for all tie-break rules. In al
these equilibria, bidders randomize on one-dimensional supports, but the paired
the support are typically unequal, leading to the possibility of multiple winning bidde
receiving negative payoffs, an event that happens with positive probability.

6.4. As mentioned in the introduction, all-pay majority auction games can be us
models of the strategic aspects of campaign spending in electoral college contes
models correspond to the very special case of equal numbers of votes in each sta
state being a winner-take-all contest, and the winner in each state being the larger s
Despite all these simplifying assumptions, we have no equilibrium constructions fo
two-candidate cases(m = 1) except in the simplest case ofk = 2, n = 3. Perhaps the
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difficulty of constructing such an equilibrium even in the simplest setting is related t
high esteem in which successful election strategists are held.

We may simplify our all-pay setting even farther by assuming the candidates have
and equal budgets. This turns the game into a “Colonel Blotto” model of the sort origi
by Borel (cf. Borel and Ville, 1938, and Laslier and Picard, 2000).

6.5. As in the generalizations of the pure chopstick game in SR, generalizations b
the stark preference structure of this paper are imaginable and if analyzable would pr
go some way toward improved applicability of the model. Indeed, we know of no
life auction scenarios that are reasonably modeled as pure majority auction game
when symmetry and complete information are not far wrong, the payoff forms here
too extreme. Objects selling at auction rarely have such little value when combin
suboptimal ways that it is reasonable to treat them as literally worthless. And if the as
payoff forms were correct and known to the seller, she would be inclined to use si
auction designs anyway. But our purpose has been to expose the structure of sym
equilibria of a class of games which, while likely inapplicable by themselves, may su
equilibrium structures in more applicable models. Given the dearth of current know
of equilibrium structure of games involving exposure problems, this has seemed t
fruitful way to proceed.
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Appendix A

Proof of Lemma 4. We need to verify only the middle equality. To do this, decompose the event th
coordinates ofx defeat (including ties) all the bids of a randomly chosenF -bidder,k of whose bids are som
positive number (sayw) with the remainingn−k being zero, according to the position of that bidder’s lastw bid.

1. If the lastw bid is in positionn, which can occur in
(
n−1
n−k

)
of the

(
n

n−k

)
equally likely ways for then − k

zero bids to be distributed among then positions, then all coordinates ofx win wheneverw is less thanxn . The
probability of this event is therefore(

n−1
n−k

)(
n

n−k

)G(xn).

2. If the lastw bid is in positionn−1, which can occur in
(

n−2
n−k−1

)
ways (since one of the zeroes is necessa

in positionn), then all coordinates ofx win wheneverw is less thanxn−1. The probability of this event is therefor(
n−2

n−k−1

)(
n

n−k

) G(xn−1).

· · ·
n− k + 1. If the lastw bid is in positionk, which can occur in only

(
n−(n−k+1)

0

)= 1 way, then all coordinate
of x win wheneverw is less thanxk . The probability of this event is(

k−1
0

)(
n
)G(xk). ✷
n−k
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Proof of Lemma 5. First note that in the original gameFm(z1, . . . , zk,1, . . . ,1) is the probability that the
bids z1, . . . , zk all win. Dk sums such probabilities, and if the events were disjoint, the correct rev
expression would be simplykDk . But Dk overcounts the probabilities of events in which more thank of the
bids from the vectorx win. Correcting for the overcounts involves adding and subtracting scalar multipl
Fm(z1, . . . , zj ,1, . . . ,1) for j > k. The scalars depend only onj and neither onm nor on the specific values o
thex coordinates. ✷
Proof of Lemma 8. Suppose not. Then∃j such that

p

j∑
l=1

λl < j, or
p∑

l=j+1

λl >
p − j

p
.

Since there arep − j terms on the left side of the last inequality, at least one, and henceλj+1, must exceed 1/p.

But then the firstj λl ’s must also, in which casep
∑j

l=1 λl > j , a contradiction. ✷
Proof of Lemma 9. First note that

n−k∑
l=0

(
n− 1− l

n− k − l

)
=
(

n

n− k

)

(as in the proof of Lemma 4), and the successive terms on the left are decreasing inl. Lemma 8 therefore implie
that

(n− k + 1)

∑j−1
l=0

(
n−1−l
n−k−l

)(
n

n−k

) � j ∀j ∈ {1, . . . , n − k + 1}. ✷
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