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Abstract

Majority auction games are simultaneous sealed-bid auctions of identical objects among identical
bidders who each want to win a specified fraction (more than a half) of the objects. Each bidder
receives no benefit from winning less than the specified fraction and no additional benefit from
winning more than it. Symmetric equilibria having simple, intuitive forms are shown to exist in first-
price, second-price and all-pay versions of such games when the number of bidders is sufficiently
large. This contrasts with earlier results for the two-bidder “pure chopstick” majority auction games
where the only known equilibria are more complicated.

0 2003 Elsevier Inc. All rights reserved.

JEL classification: C72; D44

Keywords: Simultaneous auction; Exposure problem; Mixed strategy

1. Introduction

Offshore oil leases and licenses for use of parts of the radio-frequency spectrum are
two important examples of objects that have been frequently sold through simultaneous
auctions. A bidder in simultaneous auctions typically faces an “exposure problem”: If her
willingnesses to pay for each auctioned object can depend on which other objects she wins,
then: by bidding aggressively in the hope of obtaining a collection of objects she most
prefers, she runs the risk of overpaying in the event that she wins a less desired set; and by
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bidding passively she lessens her chances of winning the more desired sets for which she
would have been willing to pay more.

That simultaneous auctions give rise to exposure problems is widely appreciated (e.qg.,
Milgrom, 2000), but little is known about the structure of equilibria in games that model
them? In a recent contribution, Szentes and Rosenthal (2003), hereafter SR, made some
headway for a particular small class of such models; we constructed symmetric equilibria
for two-bidder “pure chopstick” auction games in which three identical objects are sold
simultaneously through sealed-bid first-price and second-price auétiims preferences
of the bidders are such that winning any two of the three objects generates value, while any
one is valueless by itself and three are worth no more than two. Even though the games
have complete information and identical valuations, the symmetric equilibria constructed
for the pure chopstick auctions (one equilibrium for each auction game) are surprisingly
complicated: the players randomize on a two-dimensional surface in the three-dimensional
bid-vector space.

The pure chopstick constructions were also generalized in SR to games in which the
marginal value of the third object is different from zero, but there was no hint there of
how to go beyond either two bidders or three objects. In this paper we explore such an
extension, studying simultaneous sealed-bid auctionsotifects withm + 1 bidders who
all want to win a numbek (k > n/2) of the objects and receive no benefit when they win
fewer thank objects and no additional benefit from winning more tlhatnVe call these
majority auction games. The pure chopstick games correspond to the special case where
n=3,k=2,andm = 1, with the respective payment rules. The constructions here are
very different from those in SR, however; this time surprisingly uncomplicated.

While majority auction games with first-price payment rules can be used to model
simultaneous sealed-bid auctions and such games with second-price payment rules might
be used to model simultaneous ascending auctions, all-pay majority auctions can perhaps
best be thought of as models of certain kinds of electoral competitions. In an electoral
college scheme, for instance, such as that governing US presidential elections, candidates
spend money campaigning in separate state races for electoral college votes. Each state is
allocated a fixed number of electors, and a candidate who wins a majority of all electors
wins the election. If all states were allocated the same number of electors, if the candidate
who spent the most in each state always won the state’s electors, and if winning the election
were all that motivated the candidates (besides the cost) our all-pay majority auction model
would be a perfect description of the game.

We begin our analysis by exhibiting a symmetric equilibrium for all the first-price cases
satisfyingk =n — 1 andm > 1. In each such case, the symmetric equilibrium is generated
by a probability measure on tledimensional bid-vector space that has a one-dimensional
support. In contrast with the first-price pure-chopstick construction, these equilibria, or at
least their supports, are quite intuitive: Each player selecisthe objects at random and
then makes equal bids on &l] the common level of these bids being chosen according
to a particular calculated probability distribution. The player bids zero for the remaining

2 See, however, Krishna and Rosenthal (1996) and Rosenthal and Wang (1996).
3 The construction there can easily be adapted to the all-pay case as well.
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n — k objects* Whenn/2 < k < n — 1, the situation becomes still more interesting. Here
independent mixing in the way just described produces indifference for each bidder over
the support of the randomized strategy, a necessary condition for equilibrium; but whether
it produces an actual equilibrium depends on the size.&f/e show that ifz is sufficiently

large (relative to: andk), the mixture does generate a symmetric equilibrium, but i§

not sufficiently large (as in the pure-chopstick case wheee 1), it does not. And in this
region of smaller values ofi, we do not have an alternative equilibrium construction to
offer, except in the pure-chopstick case. In addition, unfortunately, our proof technique
does not permit us to solve for the minimalas an explicit function of andk (except for

the cas& = n — 1 where the minimad: is shown to be 2).

All of this is shown to carry over to second-price and all-pay auction rules. The
only modifications needed are in the forms, but not the supports, of the randomizing
distributions.

Notwithstanding the extreme assumptions of complete information and identical
majority-type preferences for all bidders and the restriction to sealed-bid rules, our model
is able to capture some of the interesting strategic factors associated with the exposure
problem and to shed some light on it by showing how equilibrium considerations change
as the intensity of the competition changes. In the equilibria introduced here, one bidder
always wins exactly objects, so the outcome is always efficient, and no bidder ever wins
more objects than the specified majority. But always there are other bidders who win
fewer thank objects. In the equilibrium construction of SR, by contrast, a bidder could
win either one, two, or all three objects. In other words, in the pure chopstick equilibria,
bidders spread their bids over all the objects (with probability one) in the hopes of winning
a majority. Here they target a specific subset of the objects having the specified size,
guaranteeing at least that they will not win more objects than necessary.

Our new constructions suggest a surprising new role for the number of bidders in an
auction. While the idea is commonplace that the presence of more bidders generally helps
the seller through increased competition, for the pure-chopstick models two bidders is
already sufficient (at the equilibria in SR) for the seller to extract all the surplus and for
the bidders to earn zero expected profits. In those equilibria the bidders randomize over
a relatively large part of the bid-vector space. In the newly constructed equilibria, the
bidders also earn zero expected profits. But evidently when the number of bidders becomes
sufficiently large, the nature of the competition changes to one in which the bidders bid in
an intuitive fashion on a minimal set that has value. Bidding in this way when there are not
sufficiently many competitors presents an opportunity for a rival to exploit, and that is part
of the reason why the more complicated constructions are necessary for the pure chopstick
auctions

4 Evidence for the intuitiveness of such equilibria: Most theorists whom we asked to guess the form of
a symmetric equilibrium of the first-price pure chopstick game began by suggesting randomizing in exactly this
way. Unfortunately, as we will see, there can be no such equilibrium in the pure chopstick model fwhédre

5 These interpretive remarks implicitly assume that there are at least no symmetric equilibria other than those
constructed, which we conjecture to be so in all cases wh&e: k < n. That there are asymmetric equilibria in
addition is easy to verify, but we do not view these as realistically playable anonymous symmetric environments.
See Section 5 for the asymmetric equilibria and more on interpretation.
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We begin in Section 2 with a description of the model and the general one-dimensional
support construction for the first-price cases, and with some preliminary observations.
Section 3 proves that the construction generates equilibria for the first-price cases where
k=n—1andm > 1. The proof here is relatively straightforward, involving a detailed
calculation whenn = 2 and an induction argument fer > 2. The proof that the first-
price construction works for general wheneverm is sufficiently large is the subject
of Section 4. This proof is indirect and complicated, and pieces of it are relegated to
Appendix A. The reason we resort to an indirect proof method whem — 1 is that the
combinatorics become overwhelming when attempting to prove directly that there are no
profitable deviations from the strategy profile in question. To get around the combinatorics,
we work instead with a particular transformation of the bid vectors which whenlarge
serves to push the problematic deviations to a neighborhood of the transformed support of
the strategy, where they can be more easily dealt with. Even with this trick, however, a fair
amount of detailed argument is needed. In Section 5 we show that simple modifications of
the arguments in Sections 3 and 4 produce the analogous results for the second-price and
all-pay cases. Section 6 contains a number of additional observations.

2. Preliminariesfor the first-price cases

There aren + 1 bidders competing in simultaneous sealed-bid first-price auctioms for
identical objects listed in some specified ordert 1,n > 3). A pure strategy for a bidder
is an element oR”, interpreted as an ordered list of bids. The highest ofithe 1 bids
for each object wins that object at the cost of the bid. If a bidder wiabjects, his payoff
isu(q) (his revenue) less the sum of his winning bids (his cost), where

0 ifg<k,

“(Q)z{k if g >k

(n/2 < k < n).% For most of the paper the tie-break rule is immaterial; we will specify one
as needed All bidders desire to maximize their respective expected payoffs.
Forx € [0, 1], define

—k k
Gx) =" x$/<1——xi>.
n n

Note that G is continuous, strictly increasingz(0) =0, andG(1) =1; so G is a
cumulative distribution function (cdf). We study through Section 4 the strategy profile
under which each bidder independently seléab$ the n objects at random and bidson

6 Settingu at k when the quota is satisfied is just a normalization that keeps all bids worthy of attention
conveniently in the unit interval.

7 Foran example where the tie-break rule matters, consider the caseskwherdiere there is a pure-strategy
equilibrium for everym at which all bidders bid 1 on all objects if the tie-break rule always breaksy ties by
naming some one bidder to be the winner of all the objects. For other tie-break rulesk whetthe existence
of equilibria can be problematic (but see Section 5 for a reference to thé easeandm = 1, where it turns out
that there is a continuum of symmetric equilibria).
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thosek objects and zero on the remaining- k, wherex is chosen, again independently
across bidders, according to the a@f® Denote byF: R” — R the cdf of the random
vector which is generated by one bidder bidding according to this randomization.

Lemmal Letm > 1, n >3, and n/2 < k < n. If m bidders randomize independently
according to F, then the remaining bidder earns zero expected payoff at all pure strategies
in the support of F.

Proof. Without loss of generality, take a general pure strategy by the remaining bidder in
the support of' to be

(x,...,x,0,...,0),
—_— —
k n—k
wherex € [0, 1]. The expected payoff to this strategy is the difference between expected
revenue, which i% times the probability of at leagt wins, and expected cost, which is

kx times the probability that any one bid ofwins. So expected revenuek&™ (x), and
expected cost is

n—k k "
kx{ —+-G(x) | .
n n
The difference between these two expressions is readily seen to be identicafly zero.

The indifference established in Lemma 1 makes the strategy profile a candidate to be
an equilibrium. Example 1 shows that the rest of the equilibrium conditions need not be
satisfied.

Example 1. The first-price pure chopstick game£ 3,k =2, m = 1).

In Example 1, independent randomizations accordingFtado not constitute an
equilibrium. To see this, consider a deviation of the fqfm0*, 01).10 Expected revenue
from the deviation is two times the probability that one of tHelfids matches up against
the opponent’s zero bid, or/8. Expected cost is 1. So the expected payoff from the
deviation is positive.

In the next two sections we seek sufficient conditions on the parameters for independent
randomizations according t6 to constitute an equilibrium.

8 |n Section 5, where alternative payment rules are studied, the form of the construction is the same except for
changes in the functiot'.

9 There is an implicit assumption here and elsewhere in the paper that a bid of zero by the deviator always
wins when tied withm other zeroes. This turns out to have no effect on the sign of the expected payoff to any bid
vector that is used againat bidders randomizing independently accordingtoand so is irrelevant to the issue
of when independent randomizations according“téorm an equilibrium. It does serve to make the expected
payoff function for such a vector continuous on all[6f 1), which will serve to simplify some of our later
arguments.

10 A bid of 01 defeats all bids of zero and nothing else. It requires no payment when it wins. Cf. the previous
footnote.
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3. Thefirst-pricecasewithk=n -1
This section is devoted mostly to the proof of

Theorem 2. When k =n — 1 and m > 2, m + 1 independent randomizations according
to F congtitute an equilibriumfor the first-price case.

Proof. In light of Lemma 1, it is sufficient to establish that all deviating bid vectors
(i.e., those off the support df) generate nonpositive expected payoffs. Any such vector
containing bids above one is weakly dominated by a vector in which those bids are replaced
by one, and any bid below zero can similarly be replaced by a zero. So we can restrict our
attention to deviation vectors from the $611]", and we shall show that these all generate
strictly negative payoffs.

Let such a vector be denot&d= (x1, x2, ..., x,) where, without loss of generality, the
coordinates are assumed to satisfy> x2 > - - - > x,. The probability that any one bid
wins is

1 n-1 "
<— + —G(Xi)> .
n n

The expected cost of the deviation is therefore

"/1 n-1 m
E <—+ G(xi)) )
n n

i=1

which after substitution and some manipulation is seen tp Be, G™ (x;).

To compute expected revenue, let; denote the vector which ix except that its
ith componenty; is replaced by 1. Then expected revenue fronis (n — 1) times the
probability that the deviation wins at legat— 1) objects, or

(n— 1)(2 F™(Xi) = (n — 1)F'"(x)>.

i=1

To see this, note tha™ (x_;) is the probability that all the deviation’s bids except possibly
theith win. Summing these probabilities overounts: tunes the event that allbids win,
so all but one of these must be subtracted from the sum.

Next F(x) is the probability that all of the deviation’s bids defeat those of a randomly
drawn opponent. For this to be the case, either the opponent’s random dravéfiem
belowx, (the deviator's smallest bid) or it is betweepn 1 andx, but the opponent’s zero
matches up with,,. Hence

(n—DGxn) + Gxn-1)

n

F(X) =

The F(x_;) are computed similarly, and, substituting and canceling, expected revenue
becomes
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n—1) {((n —1G(x,) + G(xn—z)) N ((n —~ DG (xp-1) + G(xn_z))

n n

B <(n —1)G(xy) + G(xn1)>m}

n

As expected, revenue is seen above to depend only on the deviation’s lowest three bids
and expected cost is increasing in all its bids, we can restrict our search for deviations
generating nonnegative expected payoffs to those in which the highe&t bids are as

low as possible; i.e., wherg = --- = x,,_2.
We proceed by induction an. First, for the case: = 2, expected revenue becomes
n—1

{((n — 1% = 1) G?(x4—1) + 2G%(xn—2) + 2(n — )G (x) G (xn—2)
+2(n — 1)G(xy-1)G(xp—2) — 2(n — 1)G(x,1)G(x,1_1)}.
Since(G (x,—2) — G(xa—1) — G(x,))? =0,
(G*(xn-2) + G*(xp-1) + G*(x»))
> 2(—G(xn) G (xn-1) + G ()G (xp-1) + G(x,-1) G (x4-2)),
with equality only if G (x,,—2) = G (x,—1) + G (x,). SO expected revenue is no larger than

n—1
n2

(((n — D% = 1)G?(xn-1) + 2G?(xn2)

+ (1 — 1D)(G?(xn—2) + G?(xn—1) + G*(xn)))

n—1

= — (1 = DG + (1 = D? + 1 = 2) G2 (in-1 + (0 + DG (x0-2),

with equality only if G (x,,—2) = G (x,—1) + G (x,). But sincex,_1 < x,_2, this is in turn
no greater than

G?(xn) + G2(xn-1) + (n — 2)G?(x,—2),

with equality only ifx,, = 0 andx,—1 = x,—2. And this is in turn no greater than expected
cost, with equality only ifx, =0 andx,—1 = x,—2 (= x,—3 = --- = x1). In short, all
deviations in[0, 1]" generate strictly negative expected payoffs whes 2.

Assume now that the theorem is true far— 1, and consider the expected payoff
from a deviation vectox for the parametew:. Let x denote the value of, . .., x,—2. We
shall make use of the following:

o (n— DG +GE)\" 11
(n—Lm { ( ) —

aG(x)

n

~\\ m—1
. <(n — DG 1) + G(x)> %} —mn—2G" L),

n

n

~y\ m—1
L=(n_1)m{<(n_1)G(xn—1)+G(x)) n;l

n

~ ((n ~ DG + G(xn1)>ml 1

} —mG" (x,-1),
n

n
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om - 1)m{((n —1G(xy) + G(i))'"_ln -1

n n

n

m—1
. <(Vl —1DG(x,) + G(xnl)) n— 1} _ meil(xn).
n

(Keep in mind that these are only one-sided derivatives along boundaries of the set
(X, X1, X)) 12X 2 X012 X, 2 0})

By payoff continuity, there is a best deviation from this compact set, with the highest
n — 2 coordinates set equal fo We subdivide the possibilities for best deviation into two
cases:

(i) X =x,—1.Inthis case the best accompanyipgs 0, and the vectox is in the support
of F. If x, > 0, the expected payoff is clearly negative.

(i) X > x,—1. In this case, it must be that, > 0; for otherwise it would have to be either
the case thain/0G (x,) < 0 atx,, =0 if x,_1 > 0, which is clearly impossible in the
expression fobr/dG (x,) above wherk > x,_1, ordn/0G(x,—1) + 07 /3G (x,) <0
if x,—1 = x, =0, which is similarly impossible. But ift, > 0, it must be that
ar/9G(x) > 0, since otherwis& could be profitably decreased, and it must be that
97 /dG (xp—1) = d7/3G (xp) = 0if x,_1 > x, anddT/dG (x,,_1) + 7 /3G (x,,) = O if
xn—1 = x,. Either of these implies that the sum of the three partial derivatives must be
nonnegative. But adding up the three algebraic expressions for the partial derivatives
above yieldsn times the expected payoff for that same deviation vextahen the
parameter iz — 1, and this is negative by the induction hypothesis.

Hence all deviations frorfD, 1]" generate negative payoffsforall> 2. 0O

Theorem 2 establishes that whea- n — 1, three bidders are sufficient for the existence
of a symmetric equilibrium generated By For generak, however, three bidders are not
enough.

Example2.n =13,k =7, andm = 2.

In Example 2, independent randomizations according tto not form an equilibrium.
To see this, consider a deviation consisting of 6 bids of one and 7 bids df& expected
cost of this deviation is 6. The expected revenue is 7 times the probability that at least
one of the @ bids matches up against two zeroes. But this probability is one minus the
probability that none do. The event that none match up against two zeroes can in turn be
decomposed into the disjoint events where exagthf a particular bidder's nonzero bids
match against the deviator's ids forj = 1, ..., 7 and the remainin¢g7 — j) are covered
by the second bidder. The probability of this is

DG
(7))
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whenj € {1,...,6}, and it is (173)7l when j = 7. Summing the seven terms yields
approximately 0.1293, so the expected revenue from the deviation is approximately
7(0.8707 > 6, and the deviation is profitable.

The profitable deviations described for Examples 1 and 2 are of a very simple sort.
Working with more general deviations is more difficult. That is why we do not know for
what(n, k)-combinations beyond those covered in Theorem 2 independent randomizations
according toF form an equilibrium whem: = 2. As we will see next, however, they all do
when the number of bidders is sufficiently large.

4. Thefirst-price casewith largem
This section is devoted entirely to a proof of

Theorem 3. For fixed n and k (n/2 < k < n), if m issufficiently large, m + 1 independent
randomizations according to F constitute an equilibriumfor the first-price case.

The plan of our proof is to analyze a related gam@mong the same: + 1 players
in which the pure strategy space for each playdiid]” and the revenue part of each
player’s payoff is again if at leastk of a player’s coordinate choices are highest among all
players’ strategy vectors, and 0 otherwise. The cost part of each player’s payoffam
the pure-strategy vector= (y1, ..., y,) is simply ) ; y/*, independently of the others’
strategies. Sinc& is strictly monotone, if we identify eacly with G(x;) in the original
game, the individual player’'s mixed strategy in question in the original game corresponds
in I to making a uniform0, 1] draw and placing its realization ih (randomly chosen)
out of then coordinates of the strategy vector with the remaining k coordinates
set to 0. Call the cdf of this strategy. Now it is easy to see that = (x1,...,x,) is
a profitable deviation from independent randomizations according to the original
game if and only if(y1,...,yn) = (G(x1),...,G(x,)) is a profitable deviation from
independent randomizations according®tan I': expected revenues are identical across
the games (from monotonicity @) and the deviator’s expected costhihis ) ", G™ (x;),
which is the same as the expected cost wthen all others play the strategy in question in
the old game, as in the proofs of Lemma 1 and Theoré 2.

So the plan of our proof is to rule out the possibility of positive payoffs accruing to
deviations inI” whenevern is sufficiently large. Of course the support Bfin I" is the
same as the support 6fin the original game and does not dependqmand it is easy to see
that the payoff in” to any vector in this support againstindependent selections from
is zero. But, sinc& depends om:, asm changes each corresponds to a differemt and
this complicates the argument.

There are three main steps in the proof. We will first show (Proposition 6) that because
the expected payoffto a deviationihhappens to be a homogeneous function of degree

11 The alert reader will realize that the proof of Theorem 2 could be expressed equivalently in téfrand
as well. It appears not to make the argument there any simpler, however.
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if there is a profitable deviation i then there is also a profitable deviation in which the
highest coordinate is one. We may therefore limit ourselves to the consideration of such
deviations. The second step is to show (Proposition 7) that any such deviation yector
earns a strictly negative expected payoffirwhenevem is sufficiently large. This is easy
to prove (although its analogue would be quite difficult in the original game). It leaves us
well short of our goal, however, because it does not provide #mat works uniformly for
all suchy. The problematic deviations turn out to be those near the top point of the support;
accordingly, the (complicated) third step of our argument (Proposition 10) is to show that
for some neighborhood of the top point of the support there i®asufficiently large such
that all deviations in the neighborhood are unprofitable wheneverM . Theorem 3 then
follows from a compactness argument.

We prepare for the chain of arguments with two lemmas about payoffs in the two games
that will prove useful at several places in the development.

Lemmad.Ifx € [0, 1]" satisfiesxy > x2 > --- 2 x, and y; = G(x;) for j =1,...,n,then

S (60 S ()
(") Gl

For proof, see Appendix A.

E(y)=F(X) =

Note that sinc¥?
>(70=("s)
= Jj—k n—k

F(X) is a convex combination of the smallest- k + 1 coordinates of. Note also that
G (xy), the largest of these smallest coordinates, has the smallest coeﬁﬁgﬁ;&f,l.

Lemma 5. For x € [0, 1]%, let S;(x) denote the set of subsets of {x1,...,x,} that have
cardinality j, j = 1,..., n. Then the revenue from the deviation x € [0, 1]" in the original
game (respectivelyy = (G(x1), ..., G(xy)) inT) is

n
kZCij,
j=k
where each ¢; isa scalar independent of X, ¢, = 1, and

D/= Z Fm(Zl,...,Zj,l,...,l)

{z1,..2}€8;(X)

= Z E™(z1,...,2,,1,...,1).

{z1....2;}€S;(Y)

12 p proof of this is given implicitly in the proof of Lemma 4.
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For proof, see Appendix A.

One immediate consequence of Lemma 5 is that 2L > n (i.e., if a super-majority
is needed for a positive revenue), the highdst2L — n bids inx do not affect revenue.
Since they do affect cost, we conclude immediately

Corollary. The deviation x (respectively y) cannot be maximal payoff in the original game
(respectively I') unlessits 2k — n highest bids are equal.

Lemma 5 will also be used to establish two additional results. First, since (by
Lemma 4) F and thereforeF™ depend only on thes — k + 1 smallest elements of
{G(x1),...,Gxn)}={y1,...,ya} @and sincej >k >n —k + 1, eachD; is a polynomial
in the coordinates of each term of which has degree Second, ify consists of large
coordinates and — k small coordinates (one of the problematic deviationg’)pthen in
the revenue expression of Lemma 5 ofly contains a term in which the small coordinates
play norole. ItiskE™(y1, ..., y, 1, ..., 1), which is a polynomial by Lemma 4.

We now proceed to the first step of the proof of Theorem 3.

Proposition 6. If there is a profitable deviation in I, then there is also a profitable
deviationin {1} x [0, 1]~ 1.

Proof. First, recall that the expected cost of the deviagian I" is ) _; y/*. Next according

to Lemma 5, the revenue that accrueytovhich is the same as the revenue that accrues
to the vector of inverse transforms of the coordinatesyadh the original game, is

a linear combination ofzth powers of terms that are themselves by Lemma 4 convex
combinations of coordinates gf So both the revenue and cost accruing to the devigtion
are polynomials in the coordinatesyin which all terms have degree. This implies that

the payoff to the deviatiog, considered as a function of itsarguments, is homogeneous

of degreen. Hence rescaling the vector so that its largest coordinate is 1 does not alter the
sign of the expected payoff.0

The second step is now easy.

Proposition 7. Supposey = (y1, ..., yn) € {1} x [0, 1]* Tand yo > y3 > --- > y,. If yis
not in the support of F, then there exists M such that whenever m > M, the deviation y
has negative payoff in I when there are m + 1 players.

Proof. If y1 = y>=--- =y, =1, then revenue i¢ and the deviation earns negative
expected payoff whenever.1 > 0. Suppose then that, < 1. The probability that it
is highest among the selections it matches up against is

<n—k k >m
+ =Yk
n n

which goes to zero a& gets large. Similarly fory1, ..., y,. Hence expected revenue
goes to zero because the probability of at ldasgtins goes to zero. On the other hand,
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expected cost is at least one becawse= 1; so expected payoff is negative for
sufficiently large. O

If the proof of Proposition 7 looks suspiciously easy, it is because it is actually a very
weak result. Fixingy, < 1 and lettingn get large is equivalent to considering a sequence
of bid vectors in the original game that hawe- k + 1 coordinates becoming vanishingly
small and hence have vanishingly small probability of producing revenue. On the other
hand, since); = 1, expected cost is bounded below by one. The proof of Proposition 7 is
easy because the deviationsit rules out are uninteresting ones. The proof suggests, however,
that if a uniforma is to be found the crucial deviations in will be those for whichyy is
near 1.

We need two more lemmas to prepare for the third step in the proof of Theorem 3.

Lemma8. Supposel> Ay =i >+ >4, >0and Z‘;’zlxj =1. Then

J
pY M=) Vie(l...p)h
=1

For proof, see Appendix A.
Lemma 8 is only needed for the proof of
Lemma 9.
(n—k+D X5 ()
(nﬁk)

For proof, see Appendix A.
We are finally ready for

>j Vjel0,....n—k+1}.

Proposition 10. There exist M and & > 0 such that if there are more than M bidders, then
all deviationsy in I" with y1 = 1 in the e-neighborhood of

@,...,1,0,...,0
e N’
k n—=k
generate negative payoffs.

Proof. Consider a deviatiogwith 1=y1 > y2 > --- >y, > 0, whereyy+1 < £ € (0,1)

and for some K j* <k, yp = yk—1 ="+ = y—j++1 =w < 1. (j* is just the number of
bids at the level, = w.) For anye > 0, up to permutations of the coordinates, all bids in
thee-neighborhood of the top point of the support have the forg afherez is sufficiently
small andw is sufficiently close to 1. We will show that if the number of bidders exceeds
some uniform bound, the expected payoff from the deviayiamcreases strictly withw,

and hence must be negative (since by continuing to increase bids tied witththighest,

we come eventually to the situation where the highdstls are all 1, which must produce

a nonpositive payoff).
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First, from the corollary we know that expected payoff can be increased unless the top
2k — n bids are equal. But if they are equal ajiti> n — k + 1, then the togk bids are
already all 1's and we are done. Consequently, we restrict attention from now on to the
case IK j* <n—k+1.

Clearly

0COSt_ it
dw )

For revenue, note from Lemma 5 and the discussion following it that
Revenue=k(E" (y1,..., . 1...., D)+ Q(y)),

where the terms that make @pare all functions of at least one of the smalioordinates.
Now from Lemma 4,

e
kYo (Z—I%—;)
=0 \n—k—1)

(Y

3 _
k—(E™ (1., 36 1,00, 1) = E" Y1, oy, D).

Jw

Define

i—1 (n—1-1
_ : n=k+DX 0
o= min n -]
jell,...n—k+1} (")
which is nonnegative by Lemma 9. It follows that
j*—1 n—1-1
kYo (i)
n
(n—k)

sincek > n — k + 1. FurthermoreE (y1, ..., ¥, 1,...,1) > w since it is an average of
numbers with that property; so

> j*4+a forj*<n—k+1,

3
ka—(E’"(yl, e 1 D) = G eymuw™
w

Next define

c= 1 &£+ (1 1 )
(nfk) (nfk)

Think of ¢ as a convex combination 8fand the number 1. Observe, again from Lemmas 4
and 5, thatQ(y) is a linear combination of expressions each of which is no largerdhan
This is because foj > k at least one small bid brings eaéhcalculation belowe and
therefore eachE™ below ¢™. Furthermore, the coefficients in the linear combination
depend neither oty nor on m. Therefore|dQ(y)/dw| is bounded above byuc” 1
times some constat that is independent of andm,. Combining this with the previous
inequality, we get

arevenue
—w > (7 4+ oymw”™ ™t — dmc”
w

In light of the formula above fodcosyow, it is enough to show that

-1

m—1

amw >dmc" L,
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But if w € (c, 1], this is true for large enough and stays true as increases. Therefore,
under the hypotheses of Proposition 10 there exittsuch that for alln > M expected
payoffs increase witly until the highesk bids are all 1, and this deviation vectorihhas
nonpositive expected payoff.0

To conclude the proof of Theorem 3, lé{m) be the set of vectonge {1} x [0, 1]*~1
that earn negative payoffs whdn has at leastn players. By continuity of the payoff
function, eachA(m) is open; and by Proposition 7,J;_; A(m) is {1} x [0, 11
except for the vectors in the support 8f But Proposition 10 identifies an open set in
{1} x [0, 11", call it B, which contains that support and all of the elements of which
earn nonpositive profits. SgB, A(1), A(2), ...} is an open covering of the compact set
{1} x [0, 1]"~L. The existence of a finite subcover (from compactness) means that there is
a finite boundM’ such that whenever > M’ all deviations inI” and hence all deviations
in the original game generate nonpositive payoffs whenever the game has ai jdagers.

5. The second-price and all-pay cases

In the previous section we argued that independent randomizations according to the
cdf F constitute an equilibrium in the first-price majority auction game if and only
if independent randomizations according Eoconstitute an equilibrium of”. In this
section we will show that certain modifications Bfgenerate symmetric equilibria of the
second-price and all-pay majority auction games, respectively, exactly Wigamerates
a symmetric equilibrium of; in particular, according to our earlier results, when> 2
andk =n — 1, and whemn is sufficiently large. In both cases, the model is the same as that
of Section 2 except for the obvious changes in the payment rule. (In the second-price case,
the highest bidder for each object wins it and pays the second highest bid. In the all-pay
case, the highest bid wins each object, but all bidders pay their bids.)

5.1. The second-price case

In I" the strategyE calls for a uniform drawz from [0, 1] to be attached té of then
coordinates selected randomly. Suppose instead that in the second-price majority auction
game each player acts independently according éxcept that the bid(Z) instead ofZ
is attached to thoskecoordinates, where

n n—k k m—1
b(z)=;<z/( - +;z>) .

Call the cdf associated with this stratefyin the second-price majority auction game.

Since d(z)/dz > 0 on[0, 1], b is strictly increasing, so the expected revenue accruing
to any bid vector(zs, ..., z,) used againstz independent randomizations according to
E’ is the same as the expected revenue accruinghtd(z1), ..., b 1(z,)) againstm
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independent randomization accordingAan I". The expected cost of bidding in the
second-price auction is
Zi

/b(s)dQ(s), WhereQ(z)z(nn;k %z)
0

We need only show that this integral equals to establish thatm + 1) independent
draws from E’ constitute an equilibrium of the second-price majority auction game
whenever(m + 1) independent draws fronk constitute an equilibrium of”, since
(b~Y(z1), ..., b~ L(z»)) is then a profitable deviation il againstE whenevenz, ..., z,)

is a profitable deviation againgt . But

_ m—1
dQ(z):m_k<n k+k> ,

—2Z
dz n

n n
di' _ dg" dz _g( /<n—k+§ '>>'"—1
d0(z)  dz; dQG;) K\ n ’

and so by the Fundamental Theorem of Calculus

SO

<i

/ b(s)dQ(s) =z]".

0

5.2. Theall-pay case

The modification off that works for the all-pay majority auction game is to randomize
by making a uniform drawZ as in E but to bid Z™ on the k randomly selected
objects. As above, the revenue accruing to the ve¢ter...,z,) againstm such
randomizations drawn independently in the all-pay game is the same as that accruing to
(zDY™, ..., (z,)¥™) againstn independent draws frord in I". But the expected cost
of (Y™, ..., (z)Y™) inI'is > i zi,» the same as the expected cost of the bid vector
(z1, ---,zn) in the all-pay majority auction game.

6. Additional remarks

6.1. For some parameter combinations we are still in the dark: Except for the caSe
k = 2, we have no equilibrium constructions when= 1, and as andk get larger we have
no equilibrium constructions for smalt that are larger than 1. Existence of symmetric
equilibrium for any of these cases is not in doubt, at least for some tie-break rule (cf.
Simon and Zame, 1990), and we suspect that atomless symmetric equilibria always exist
for all tie-break rules and for ath, but these are likely even more complicated than the 1
in SR.
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6.2. For the casea = 3, k = 2, we know that whem: = 1, there are the symmetric
equilibria constructed in SR and when > 1, there are the symmetric equilibria
constructed here. We know of no other symmetric equilibria for these parameter
combinations and suspect that there are none. There are asymmetric equilibria for all
payment rules however whem > 1, and at least some of these are easily described. Fix
some number’ < m of the bidders at the zero vector ®" and have the remaining
m + 1 — m’ bidders play the symmetric equilibrium of the+ 1 — m’ bidder game. Note
that all bidders earn zero profits at this asymmetric profile. Wiea m — 1 it was verified
in SR that the strategy profile forms an equilibrium. For smaller positiVs, it suffices
to check that none of the zero bidders gains by deviating. If one of them deviates to a bid
vector on the support of the randomizers, it is easily checked by direct calculation that
the payoff is negative, as it is less than the payoff to such a deviation at the equilibrium
of the game withm + 1 — m’ bidders. If one of them deviates to an off-support vector a
similar argument must be made, essentially mimicking the order of the steps in the proof
of Theorem 2. For other combinations mfand k—we suspect, but have not checked—
asymmetric equilibria can be constructed similarly, at least when the reduced-player game
is known to have a zero-profit symmetric equilibrium.

6.3. Except briefly in a footnote, we have so far not mentioned the caseskwith.
These cases correspond to games that have a very different structure than the games treated
in this paper. With the right tie-break rule, as mentioned, they have pure-strategy Bertrand-
type equilibria. More interesting, however, is that even though the exposure problem
is avoided if all bidders randomize over equal-bid supports, such randomizations never
generate symmetric equilibria. This is easy to see: For the first-price case, for instance, the
bottom point of such a support would (unless it were an atom, which would be impossible
in equilibrium) generate zero expected payoff with probability 1, but intermediate points
would generate positive expected payoffs, as they either win all (with positive probability)
or none of the objects. And a necessary condition for equilibrium is equal expected payoffs
for a player at all points of the support. So it is the existence of an exposure problem
whenk < n, even when all bidders randomize in the pattern of the equilibria of this paper,
that renders such structures capable of generating equilibria, which they domvigen
sufficiently large.

In related work, Szentes (forthcoming) constructs a continuum of atomless, zero-payoff,
symmetric equilibria for the cases where=n andm = 1 for all tie-break rules. In all
these equilibria, bidders randomize on one-dimensional supports, but the paired bids in
the support are typically unequal, leading to the possibility of multiple winning bidders all
receiving negative payoffs, an event that happens with positive probability.

6.4. As mentioned in the introduction, all-pay majority auction games can be used as
models of the strategic aspects of campaign spending in electoral college contests. Our
models correspond to the very special case of equal numbers of votes in each state, each
state being a winner-take-all contest, and the winner in each state being the larger spender.
Despite all these simplifying assumptions, we have no equilibrium constructions for the
two-candidate case@n = 1) except in the simplest case bf= 2, n = 3. Perhaps the
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difficulty of constructing such an equilibrium even in the simplest setting is related to the
high esteem in which successful election strategists are held.

We may simplify our all-pay setting even farther by assuming the candidates have fixed
and equal budgets. This turns the game into a “Colonel Blotto” model of the sort originated
by Borel (cf. Borel and Ville, 1938, and Laslier and Picard, 2000).

6.5. Asin the generalizations of the pure chopstick game in SR, generalizations beyond
the stark preference structure of this paper are imaginable and if analyzable would probably
go some way toward improved applicability of the model. Indeed, we know of no real-
life auction scenarios that are reasonably modeled as pure majority auction games. Even
when symmetry and complete information are not far wrong, the payoff forms here seem
too extreme. Objects selling at auction rarely have such little value when combined in
suboptimal ways that it is reasonable to treat them as literally worthless. And if the assumed
payoff forms were correct and known to the seller, she would be inclined to use simpler
auction designs anyway. But our purpose has been to expose the structure of symmetric
equilibria of a class of games which, while likely inapplicable by themselves, may suggest
equilibrium structures in more applicable models. Given the dearth of current knowledge
of equilibrium structure of games involving exposure problems, this has seemed to us a
fruitful way to proceed.
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Appendix A

Proof of Lemma 4. We need to verify only the middle equality. To do this, decompose the event that all
coordinates ok defeat (including ties) all the bids of a randomly chogé#idder, k¢ of whose bids are some
positive number (sayw) with the remaining: — k being zero, according to the position of that bidder’s lagtid.

1. If the lastw bid is in positionn, which can occur |r(,’1‘j) of the (,",) equally likely ways for the: — k
zero bids to be distributed among theositions, then all coordinates ®fwin wheneverw is less tharnx,. The
probability of this event is therefore

()
()

2. I the lastw bid is in positionn — 1, which can occur irf

G(xn).

n-2 ) ways (since one of the zeroes is necessarily

n—k—1
in positionr), then all coordinates of win whenevem is less tharx,_1. The probability of this event is therefore
( n—2 )
=L G ().
(n—k)

n—k+ 1. If the lastw bid is in positionk, which can occur in only" =" **) = 1 way, then all coordinates
of x win whenevemw is less than;. The probability of this event is

(“a)
()

G (xp). O
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Proof of Lemma 5. First note that in the original gam&™(z1,...,z,1,...,1) is the probability that the
bids z1,...,zx all win. Dy sums such probabilities, and if the events were disjoint, the correct revenue
expression would be simplyD,.. But D; overcounts the probabilities of events in which more thaof the

bids from the vectox win. Correcting for the overcounts involves adding and subtracting scalar multiples of
F™(z1,...,2zj,1,...,1) for j > k. The scalars depend only grand neither om: nor on the specific values of
thex coordinates. O

Proof of Lemma 8. Suppose not. Theh; such that

J r .
pZAl<j, or Z Al>u.
=1 I=j+1 P

Since there are — j terms on the left side of the last inequality, at least one, and hienge must exceed /Ip.
But then the firsj A;’s must also, in which caspzlf:1 A > j, acontradiction. O

Proof of Lemma 9. First note that

"i:k(nflfl)_( n )

g \n— k—1 n—k

(as in the proof of Lemma 4), and the successive terms on the left are decredsibgrnitma 8 therefore implies
that

Yo ()

n—k+1) -
(n—k)

>j Vje{l,....n—k+1. O
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